Sustainable use of water resources in agriculture in Beijing: problems and countermeasures

Water Policy ◽  
2005 ◽  
Vol 7 (4) ◽  
pp. 345-357 ◽  
Author(s):  
Yan Wang ◽  
Hongrui Wang

Beijing, the capital of China, is one of the most water-scarce metropolises in the world. The present water policies are leading to serious water scarcity in agriculture. The proportion of agricultural water to total water has been dropping continuously in Beijing in past years. The influence of water scarcity on grain yield and planting production value has been analyzed in this paper. The problems of ecological environment and rural social problems that arise from water scarcity are also discussed in the paper. Based on the above analysis, the paper gives some suggestions for alleviating the tension, such as developing water-saving agriculture, adjusting planting structure and properly developing sewage irrigation.

2019 ◽  
Vol 11 (7) ◽  
pp. 1856 ◽  
Author(s):  
Mengran Fu ◽  
Bin Guo ◽  
Weijiao Wang ◽  
Juan Wang ◽  
Lihua Zhao ◽  
...  

Rapid economic development has posed pressure on water resources, and the potential for a water crisis has become an important obstacle to the sustainable development of society. Water footprint theory and its applications in agriculture provide an important strategic basis for the rational utilization and sustainable development of water resources. Based on the monthly meteorological observations and agricultural data of Shandong Province, CROPWAT 8.0 and Geographic Information System (GIS) technology, the green, blue and grey water footprints of wheat, maize, cotton and groundnut from 1989 to 2016 were calculated and the spatial variations of water footprints for crops in different rainfall years were analyzed. Additionally, assessment of water stress for agricultural productions was conducted in this study. The results showed that the average water footprints of wheat, maize, cotton and groundnut were 2.02 m3/kg, 1.24 m3/kg, 7.29 m3/kg and 1.75 m3/kg, respectively in Shandong Province. A large amount of the average total water footprint was calculated for wheat (420.59 × 108 m3/yr), maize (222.16 × 108 m3/yr), cotton (72.70 × 108 m3/yr) and groundnut (50.07 × 108 m3/yr). The average total water footprint of the four crops was 765.52 × 108 m3/yr (29.98% blue) and exhibited a gradual decreasing trend over time. Specifically, the total water footprint of wheat was the highest among four main crops in Shandong Province and exhibited a decreasing trend during 1989–2016. The maize was ranked in the second place, and was the only crop still increasing rapidly. The spatial and temporal changes of water footprints for crops were obvious in different rainfall years. Additionally, agricultural productions in most regions were facing the threat of water scarcity. Therefore, the scientific planning of crop planting structures and rational control of sown areas of crops with large water footprints should be implemented in severely water-scarce regions. This study can give some suggestions on the adjustment of planting structure for the sustainable development of agriculture and the realization of efficient utilization of water resources.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Zhuoying Zhang ◽  
Minjun Shi ◽  
Kevin Z. Chen ◽  
Hong Yang ◽  
Shouyang Wang

AbstractThe formation of world-class megalopolises has been a goal of urban development agencies around the world owing to their economic advantages. On their bids of becoming a world-class megalopolis, water availability is a factor that requires consideration. China has set an ambitious goal of developing a world-class megalopolis in the water-scarce Beijing-Tianjin-Hebei (BTH) region. This study investigates the water challenge the BTH region faces and the effects of main water conservation measures in the region towards the goal. An inter-city input–output model was constructed for identifying the water gap in the region and analyzing the effectiveness of main water conservation measures under various scenarios. The results indicate a significant gap between the water required to achieve the goal of becoming a world-class megalopolis and the region’s available water resources. Although proposed water conservation measures of improving water use efficiency and reducing agricultural water use provide a modest improvement, the amount of water required for urban development still exceeds the availability. The study emphasizes the significance of agricultural water use reduction in Hebei through crop system replacement from water-intensive winter wheat to water-saving crops. The study also proposes an alternative option of adjusting the development plan through redefining the boundary of the BTH megalopolis by excluding part of cities in Hebei. The results of this study contribute to a better understanding of the effect of water scarcity on urban development and thus provide references for other water-scarce regions with ambitious urban development goals.


2018 ◽  
Vol 10 (3) ◽  
pp. 819 ◽  
Author(s):  
Sumaiya Ahammed ◽  
Eun-Sung Chung ◽  
Shamsuddin Shahid

This study assesses the geographical distribution of agricultural water scarcity in Bangladesh in order to streamline the adaptation measures. The agricultural water scarcity was assumed to be a system with five subsystems, namely, groundwater depth, surface water availability, rainfall availability, groundwater salinity for irrigation, and surface water salinity for irrigation. The catastrophe-theory-based multi-criteria decision making approach was used for the estimation of agricultural water scarcity index from five subsystem indices. The obtained results showed that agriculture in about 6.3% of the area of the country is experiencing very high-risk water scarcity, 19.1% with high water scarcity, 37.2% with moderate water risk, and the rest is low or no risk of water scarcity for agriculture. Results showed that the western part of Bangladesh was more vulnerable to agricultural water scarcity. The analysis of the results showed that higher agriculture water scarcity in the northwest region resulted from water unavailability, and in the southwest region it was closely related to poor water quality. The severe areas of water scarcity are very similar to those that are usually regarded as water-scarce. The approach presented in this study can be used for rapid but fair assessment of water scarcity with readily available data, which can be further improved by incorporating other factors related to water scarcity.


2021 ◽  
Vol 07 (03) ◽  
pp. 2150012
Author(s):  
Sahar Farid Yousef

More than one-quarter of the world’s population lives in water-scarce areas, while most countries share at least one transboundary river. If water scarcity is this prevalent, should we expect riparian countries to fight over the water allocation of shared rivers? To answer this question, I develop a modified one-shot three-stage river-sharing game where countries can resort to force to solve their water allocation problem. Using backward induction, I solve for the probability of the downstream country initiating conflict against the upstream country and the likelihood of the latter responding with force to the former’s hostile actions. I test the model empirically using a set of all upstream–downstream riparian dyads with available data from AQUASTAT and the Correlates of War Project for the years 1960–2010. The main contribution of this paper is that it demonstrates how upstream and downstream riparian countries differ in their decision to use force against the other country when experiencing water scarcity. I find that water scarcity increases the likelihood of the downstream country initiating the conflict, but it has no effect on the upstream country’s likelihood of responding with force. If history is a predictor of the future, then the results imply that as more riparian countries become water-scarce, militarized conflicts between upstream and downstream countries are likely to increase, especially if there is heterogeneity in water availability between the riparian dyad.


Author(s):  
Edward Rollason ◽  
Pammi Sinha ◽  
Louise J Bracken

Water scarcity is a global issue, affecting in excess of four billion people. Interbasin Water Transfer (IBWT) is an established method for increasing water supply by transferring excess water from one catchment to another, water-scarce catchment. The implementation of IBWT peaked in the 1980s and was accompanied by a robust academic debate of its impacts. A recent resurgence in the popularity of IBWT, and particularly the promotion of mega-scale schemes, warrants revisiting this technology. This paper provides an updated review, building on previously published work, but also incorporates learning from schemes developed since the 1980s. We examine the spatial and temporal distribution of schemes and their drivers, review the arguments for and against the implementation of IBWT schemes and examine conceptual models for assessing IBWT schemes. Our analysis suggests that IBWT is growing in popularity as a supply-side solution for water scarcity and is likely to represent a key tool for water managers into the future. However, we argue that IBWT cannot continue to be delivered through current approaches, which prioritise water-centric policies and practices at the expense of social and environmental concerns. We critically examine the Socio-Ecological Systems and Water-Energy-Food (WEF) Nexus models as new conceptual models for conceptualising and assessing IBWT. We conclude that neither model offers a comprehensive solution. Instead, we propose an enhanced WEF model (eWEF) to facilitate a more holistic assessment of how these mega-scale engineering interventions are integrated into water management strategies. The proposed model will help water managers, decision-makers, IBWT funders and communities create more sustainable IBWT schemes.


Water Policy ◽  
2017 ◽  
Vol 19 (5) ◽  
pp. 886-907 ◽  
Author(s):  
Brian D. Richter ◽  
James D. Brown ◽  
Rachel DiBenedetto ◽  
Adrianna Gorsky ◽  
Emily Keenan ◽  
...  

As water scarcity worsens globally, there is growing interest in finding ways to reduce water consumption, and for reallocating water savings to other uses including environmental restoration. Because irrigated agriculture is responsible for more than 90% of all consumptive water use in water-scarce regions, much attention is being focused on opportunities to save water on irrigated farms. At the same time, many recent journal articles have expressed concern that claims of water-saving potential in irrigation systems lack technical credibility, or are at least exaggerated, due to failures to properly account for key elements of water budgets such as return flows. Critics have also asserted that opportunities for reallocating irrigation savings to other uses are limited because any freed-up water is taken up by other farmers. A comprehensive literature and internet survey was undertaken to identify well-documented studies of water-saving strategies in irrigated agriculture, as well as a review of case studies in which water savings have been successfully transferred to other uses. Our findings suggest that there is in fact considerable potential to reduce consumptive water use in irrigation systems when proper consideration is given to water budget accounting, and those savings can be beneficially reallocated to other purposes.


Author(s):  
Helena Guasch ◽  
Alexandra Serra ◽  
Natàlia Corcoll ◽  
Berta Bonet ◽  
Manel Leira

2019 ◽  
Vol 21 (4) ◽  
pp. 605-622 ◽  
Author(s):  
Laura J. Carter ◽  
Benny Chefetz ◽  
Ziad Abdeen ◽  
Alistair B. A. Boxall

Use of reclaimed wastewater for agricultural irrigation is seen as an attractive option to meet agricultural water demands of a growing number of countries suffering from water scarcity.


Sign in / Sign up

Export Citation Format

Share Document