The effects of traffic loads on drinking water main failure frequencies in the Netherlands

2016 ◽  
Vol 11 (3) ◽  
pp. 524-530
Author(s):  
A. Moerman ◽  
B. A. Wols ◽  
R. Diemel

Understanding pipe failure is essential for effective asset management. Buried drinking water pipes are exposed to several types of external loads, e.g. soil weight, loads due to soil settling differences and traffic loads. The hypothesis that traffic loads positively affects the number of failures was statistically tested. For three out of four studied water companies significant higher failure frequencies than average were found at road crossings. Frequencies equal to average were found for pipes which are installed under other road sections. Frequencies higher than average–but not statistically significant–were found around speed bumps. The results of the multiple regression analyses show that the overall contribution of the parameter ‘road classification’ to pipe failure is small compared to the influence of pipe diameter, pipe material and year of installation.

2006 ◽  
Vol 54 (3) ◽  
pp. 49-56 ◽  
Author(s):  
J. Silhan ◽  
C.B. Corfitzen ◽  
H.J. Albrechtsen

Segments of used drinking water pipes of galvanised steel (GS), cross-linked polyethylene (PEX), copper pipes (Cu) or new medium-density polyethylene (PE) were investigated for the formation of biofilm and survival of E. coli in biofilm and in the water phase. Pipes were filled with water and incubated at 15 °C or 35 °C under static conditions. Biofilm formation was followed during 32, 40 and 56 (58) d. The most dense biofilm was formed on GS, reaching approximately 4.7×105 CFU/cm2 measured as heterotrophic plate count (HPC), and at the other materials the density reached 3×103 CFU/cm2 on PE and PEX and 5×101 and 5×102 CFU/cm2 on Cu pipes after 58 d at 15 °C. Biofilm HPC values were higher at 35 °C than at 15 °C, with only slightly higher values on the metals, but 100-fold higher on PE and PEX. Adenosine triphosphate (ATP) measurements confirmed the general trends observed by HPC. Higher temperature was seen to be an important factor reducing E. coli survival in the water phase in drinking water pipes. At 15 °C E. coli survived more than 4 d in GS and Cu pipes and 8 d in PE pipes, but was not detected after 48 h at 35 °C. The E. coli survived longer at both temperatures in the glass control bottles than in the drinking water pipes. Despite the obvious biofilm formation, E. coli was not detected in the biofilm at any of the investigated surfaces.


2020 ◽  
Vol 20 (8) ◽  
pp. 2941-2950
Author(s):  
R. Beuken ◽  
J. Eijkman ◽  
D. Savic ◽  
A. Hummelen ◽  
M. Blokker

Abstract This paper gives an overview of the asset management landscape on drinking water in the Netherlands and twenty years of research on this topic executed by KWR in close collaboration with water companies. A description is given of research questions and the international developments in the field of asset management. This is followed by the developments on asset management at the Dutch water company Evides. Twenty years of asset management research at KWR is presented in five phases, showing a transition from the question of how can the concepts of asset management help to better plan the replacement of distribution networks, towards integrated decision making on the asset system as a whole. A focal point for research could be how research can contribute to creating value for water companies. More formal information and improved modelling will continue to play a central role; however, attention is required for making use of expert knowledge, scenario building, data quality and the integration of information of technical, financial and societal origin.


Author(s):  
Gabriel Pablo Lobo ◽  
Ashok Gadgil

Toxic levels of lead leaching from ageing water distribution infrastructure affect over 5,000 public drinking water systems in the US. Pipe replacement, the most effective solution to this problem, is...


Agriculture ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 86
Author(s):  
Regina Böger ◽  
Karl Rohn ◽  
Nicole Kemper ◽  
Jochen Schulz

Poor drinking water quality can affect pigs’ health and performance. The disinfection of water may enhance microbial water quality. In this study, bacteria and endotoxins in sodium hypochlorite-treated and -untreated water from one pig nursery were analyzed. Water samples were taken from incoming water and from compartments with treated and untreated water at the beginning and end of pipes and from nipples. The farm was visited 14 times to measure total bacteria counts and concentrations of Pseudomonas spp. and endotoxins. Additionally, the occurrence of coliform bacteria was analyzed. A mixed model analysis revealed significant reductions in total bacteria counts and Pseudomonas spp. in treated water at the beginning of pipes and at nipple drinkers. The differences between bacteria concentrations at the end of pipes had no clear trend. Endotoxin concentrations were approximately equal at the beginning of pipes and at nipple drinkers but were found to have differences at the end of pipes. The occurrence of coliform bacteria was significantly reduced in treated water. The application of sodium hypochlorite can significantly reduce bacteria in water pipes. Endotoxin concentrations were mostly unaffected by water treatment. Disinfection of the dead-end pipe sections failed, and thus these parts should be regarded as potential contamination sources.


Opflow ◽  
2021 ◽  
Vol 47 (8) ◽  
pp. 20-22
Author(s):  
Min Tang ◽  
Michael R. Schock ◽  
Helen Y. Buse ◽  
Darren A. Lytle ◽  
Robert E. Fields ◽  
...  
Keyword(s):  

2019 ◽  
Vol 53 (22) ◽  
pp. 13293-13301 ◽  
Author(s):  
Andreas Wimmer ◽  
Jessica Beyerl ◽  
Michael Schuster
Keyword(s):  

2018 ◽  
Vol 19 (2) ◽  
pp. 404-416 ◽  
Author(s):  
B. A. Wols ◽  
A. Vogelaar ◽  
A. Moerman ◽  
B. Raterman

Abstract The influence of the weather parameters of temperature, wind and drought on pipe failure of drinking water distribution pipes was studied for the Netherlands. Several data sources were used relating weather effects to pipe failure: pipe failure data, regional weather data from different weather stations in the Netherlands, soil settlement data obtained from satellites and (modelled) pressure data. For asbestos-cement (AC) and cast iron (CI) pipes, temperature was an important factor. CI pipes showed increased pipe failures at low temperatures, which confirms results from previous studies, whereas AC pipes showed increased pipe failures at high temperatures. Pipe failure rates were higher for pipes that on average received higher internal pressures. This study also showed that wind resulted in additional pipe failures caused by uprooting of trees during a severe storm. With respect to drought, in some regions in the Netherlands, increased pipe failures during periods of drought were found. A small influence of soil settlement on pipe failure was found using remote-sensing techniques for a small area (5 × 10 km) in the Netherlands.


Sign in / Sign up

Export Citation Format

Share Document