scholarly journals Investigating the feasibility of removing the rapid mixing unit in conventional surface water treatment and its effect on turbidity removal

Author(s):  
Abolfazl Hessam ◽  
Mohammad Hadi Mehdinejad

Abstract Coagulation and Flocculation processes play a major role in surface water treatment. The aim of this study was to eliminate the rapid mixing unit in the water treatment plant. This experimental study was conducted on turbid water. Turbid water was synthesized by kaolin powder. The conventional Jar Test method was used. The flocculation and sedimentation processes were performed on the turbid water without rapid mixing unit for getting the new optimal condition. When the PACl coagulant was used alone and in conjunction with chitosan, the percentages of turbidity removal in low, medium and high turbidities were obtained 86.7%, 95.8%, 97.8% and 86.67%, 95.73%, 98.26%, respectively. When the rapid mixing unit was emitted, the efficiency of turbidity removal in the low turbidity was reduced from 5.26% to 21.73%. But, in higher turbidity in two states (presence and absence of the rapid mixing units) did not have a significant difference. This study showed that the removal of the rapid mix unit on the removal efficiency of turbidity in the low turbidity is effective, but does not effect on higher turbid water. Also, to use PACl in conjunction with chitosan were effective on the removal efficiency and to reduce of residual aluminum.

2014 ◽  
Vol 71 (4) ◽  
pp. 638-644 ◽  
Author(s):  
Alina Pruss

A technological investigation was carried out over a period of 2 years to evaluate surface water treatment technology. The study was performed in Poland, in three stages. From November 2011 to July 2012, for the first stage, flow tests with a capacity of 0.1–1.5 m3/h were performed simultaneously in three types of technical installations differing by coagulation modules. The outcome of the first stage was the choice of the technology for further investigation. The second stage was performed between September 2012 and March 2013 on a full-scale water treatment plant. Three large technical installations, operated in parallel, were analysed: coagulation with sludge flotation, micro-sand ballasted coagulation with sedimentation, coagulation with sedimentation and sludge recirculation. The capacity of the installations ranged from 10 to 40 m3/h. The third stage was also performed in a full-scale water treatment plant and was aimed at optimising the selected technology. This article presents the results of the second stage of the full-scale investigation. The critical treatment process, for the analysed water, was the coagulation in an acidic environment (6.5 < pH < 7.0) carried out in a system with rapid mixing, a flocculation chamber, preliminary separation of coagulation products, and removal of residual suspended solids through filtration.


Membranes ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 149 ◽  
Author(s):  
Bin Huang ◽  
Hangkun Gu ◽  
Kang Xiao ◽  
Fangshu Qu ◽  
Huarong Yu ◽  
...  

Membrane fouling is still the bottleneck affecting the technical and economic performance of the ultrafiltration (UF) process for the surface water treatment. It is very important to accurately understand fouling mechanisms to effectively prevent and control UF fouling. The rejection performance and fouling mechanisms of the UF membrane for raw and coagulated surface water treatment were investigated under the cycle operation of constant-pressure dead-end filtration and backwash. There was no significant difference in the UF permeate quality of raw and coagulated surface water. Coagulation mainly removed substances causing turbidity in raw surface water (including most suspended particles and a few organic colloids) and thus mitigated UF fouling effectively. Backwash showed limited fouling removal. For the UF process of both raw and coagulated surface water, the fittings using single models showed good linearity for multiple models mainly due to statistical illusions, while the fittings using combined models showed that only the combined complete blocking and cake layer model fitted well. The quantitative calculations showed that complete blocking was the main reason causing flux decline. Membrane fouling mechanism analysis based on combined models could provide theoretical supports to prevent and control UF fouling for surface water treatment.


2006 ◽  
Vol 54 (3) ◽  
pp. 23-28 ◽  
Author(s):  
J. Rapala ◽  
M. Niemelä ◽  
K.A. Berg ◽  
L. Lepistö ◽  
K. Lahti

The removal of cyanobacteria, hepatotoxins produced by them (microcystins), phytoplankton, heterotrophic bacteria and endotoxins were monitored at a surface water treatment plant with coagulation, clarification, sand filtration, ozonation, slow sand filtration and chlorination as the treatment process. Coagulation–sand filtration reduced microcystins by 1.2–2.4, and endotoxins by 0.72–2.0 log10 units. Ozonation effectively removed the residual microcystins. The treatment process reduced phytoplankton biomass by 2.2–4.6 and heterotrophic bacteria by 2.0–5.0 log10 units. In treated water, the concentration of microcystins never exceeded the WHO guide value (1 μg/L), but picoplankton and monad cells were often detected in high numbers. The heterotrophic bacterial isolates from the treated waters belonged to genera Sphingomonas, Pseudomonas, Bacillus, Herbaspirillum and Bosea.


Sign in / Sign up

Export Citation Format

Share Document