Review of the Aquatic Toxicity, Estrogenic Responses and Bioaccumulation of Alkylphenols and Alkylphenol Polyethoxylates

1999 ◽  
Vol 34 (1) ◽  
pp. 123-178 ◽  
Author(s):  
Mark R. Servos

Abstract A review of the available information on the toxicity and bioaccumulation of alkyphenols (AP) and their polyethoxylates (APE) and polyethoxycarboxylates (APEC) was conducted in support of their assessment as Priority Substances under the Canadian Environmental Protection Act. This included an examination of the acute and chronic toxicity of these compounds in a wide variety of aquatic organisms as well as an examination of their potential effects on endocrine function in fish and aquatic invertebrates. Although the data in the literature are scattered among many species, different test methods and chemicals, there is a consistent pattern in the toxicity. Nonylphenol (NP) and octylphenol (OP) are both acutely toxic to fish (17-3000 µg/L), invertebrates (20-3000 µg/L) and algae (27-2500 µg/L). In chronic toxicity tests no observable effect concentrations (NOEC) are as low as 6 mg/L in fish and 3.7 µg/L in invertebrates. There is an increase in the toxicity of both NPEs and OPEs with decreasing EO chain length. NPECs and OPECs are less toxic than corresponding APEs and have acute toxicities similar to APEs with 6-9 EO units. APs and APEs bind to the estrogen receptor resulting in the expression of several responses both in vitro and in vivo, including the induction of vitellogenin. The threshold for vitellogenin induction in fish is 10 µg/L for NP and 3 µg/L for OF. APEs also affect the growth of testes, alter normal steroid metabolism, disrupt smoltificaton and cause intersex (ova-testes) in fish. The available literature suggests that the ability of AP and APEs to bioaccumulate in aquatic biota in the environment is low to moderate, BCFs and BAFs in biota, including algae, plant, invertebrates and fish range from 0.9 to 3400. Although there are relatively few data available for OP or OPEs, their potential to bioaccumulate is expected to be similar to that of corresponding NP and NPEs.

2017 ◽  
Vol 68 (8) ◽  
pp. 1711-1715
Author(s):  
Stefania Gheorghe ◽  
Gabriela Geanina Vasile ◽  
Cristina Gligor ◽  
Irina Eugenia Lucaciu ◽  
Mihai Nita Lazar

Metallic elements copper (Cu), zinc (Zn), nickel (Ni) and manganese (Mn) are some of the most commonly found in water and sediment samples collected from the Danube - Danube Delta. These elements are important as essential micronutrients, being normally present at low concentrations in biological organisms, but in high concentrations they become toxic with immediate and delayed effects. The role of this metals is still controversial, that�s why bioconcentration potential is so important. In this non-clinical study, we tested in vitro effect of heavy metals on carp, Cyprinus carpio, reproducing in vivo presence of Cu, Zn, Ni and Mn in the Romanian�s surface water. The toxicity tests were performed according to OECD 203 by detecting the average (50%) lethal concentration - LC50 on aquatic organisms (freshwater fish) at 96h. The results pointed out that, copper value for LC 50 at 96h was estimated as 3.4 mg/L (concentrations tested in the range of 0.1 - 4.75 mg/L). Zinc value for LC 50 at 96h was estimated as 20.8 mg/L (concentrations tested in the range of 0.028 � 29.6 mg/L). Nickel value for LC 50 at 96h was estimated as 40.1 mg/L (concentrations tested in the range of 0.008 - 84.5 mg/L). For manganese the mortality effects has recorded at LC 50 at 96h at estimated value higher than 53 mg/L (concentrations tested in the range of 0.04 - 53.9 mg/L). The accuracy of the testing metals concentration was insured by the screening of the dilution water, as well as food and control fish, acclimated in laboratory conditions.


1995 ◽  
Vol 23 (1) ◽  
pp. 61-73
Author(s):  
Coenraad Hendriksen ◽  
Johan van der Gun

In the quality control of vaccine batches, the potency testing of inactivated vaccines is one of the areas requiring very large numbers of animals, which usually suffer significant distress as a result of the experimental procedures employed. This article deals with the potency testing of diphtheria and tetanus toxoids, two vaccines which are used extensively throughout the world. The relevance of the potency test prescribed by the European Pharmacopoeia monographs is questioned. The validity of the potency test as a model for the human response, the ability of the test to be standardised, and the relevance of the test in relation to the quality of the product are discussed. It is concluded that the potency test has only limited predictive value for the antitoxin responses to be expected in recipients of these toxoids. An alternative approach for estimating the potency of toxoid batches is discussed, in which a distinction is made between estimation of the immunogenic potency of the first few batches obtained from a seed lot and monitoring the consistency of the quality of subsequent batches. The use of animals is limited to the first few batches. Monitoring the consistency of the quality of subsequent batches is based on in vitro test methods. Factors which hamper the introduction and acceptance of the alternative approach are considered. Finally, proposals are made for replacement, reduction and/or refinement (the Three Rs) in the use of animals in the routine potency testing of toxoids.


2001 ◽  
Vol 204 (2) ◽  
pp. 217-227
Author(s):  
J.A. Albertus ◽  
R.O. Laine

Many aquatic organisms are resistant to environmental pollutants, probably because their inherent multi-drug-resistant protein extrusion pump (pgp) can be co-opted to handle man-made pollutants. This mechanism of multixenobiotic resistance is similar to the mechanism of multidrug resistance exhibited in chemotherapy-resistant human tumor cells. In the present study, a variety of techniques were used to characterize this toxin defense system in killifish (Fundulus heteroclitus) hepatocytes. The cellular localization and activity of the putative drug efflux system were evaluated. In addition, in vitro and in vivo studies were used to examine the range of expression of this putative drug transporter in the presence of environmental and chemotherapeutic toxins. The broad range of pgp expression generally observed in transformed mammalian cells was found in normal cells of our teleost model. Our findings suggest that the expression of the pgp gene in the killifish could be an excellent indicator of toxin levels or stressors in the environment.


2021 ◽  
Vol 98 (5) ◽  
pp. 548-557
Author(s):  
E. A. Jain ◽  
D. Pleimes ◽  
A. A. Globenko

Introduction. The antiviral properties of imidazolyl ethanamide pentandioic acid (IPA), the active compound of the drug product, has been proven in various experimental models. However, the literature data on the toxicological properties of IPA are limited.Purpose. To evaluate mutagenic and genotoxic properties in in vitro and in vivo models, as well as to study the toxicity of IPA following chronic oral administration to rats and dogs.Materials and methods. Mutagenic and genotoxic properties of IPA were assessed using the Ames test, the test of chromosomal aberrations in human lymphocytes, and the micronucleus test in rats. The chronic toxicity of IPA was studied in Sprague Dawley rats and beagle dogs of both sexes, to which IPA was administered orally at doses of 30-300 mg/kg/day for 26 and 39 weeks, respectively.Results and discussion. In the Ames test, the addition of IPA up to the maximum dose (5000 mcg/plate) did not result in the increase in the number of revertant colonies. At a concentration of up to 5000 mcg/ml, IPA did not cause chromosomal aberrations in human leukocytes. At doses doses ≤ 2000 mg/kg, IPA did not increase the amount of micronuclei in the bone marrow of rats. In chronic experiments, animals tolerated the administration of IPA well: the dose without an observed effect (NOEL) for rats and dogs was 300 mg/kg/day.Conclusion. IPA did not show mutagenic and genotoxic properties in standard in vitro and in vivo tests. With chronic oral administration to rats and dogs, NOEL IPA equal to 300 mg/kg/day provided a systemic exposure that was 8-10 and 41-65 times higher than that in humans, respectively. The results obtained allow us to consider the safety profile of the prolonged use in humans as favorable.


ADMET & DMPK ◽  
2020 ◽  
Author(s):  
Daniela Dascălu ◽  
Diana Larisa Roman ◽  
Madalina Filip ◽  
Alecu Aurel Ciorsac ◽  
Vasile Ostafe ◽  
...  

<p class="ADMETkeywordsheading">Polylactic acid (PLA) is a polymer with an increased potential to be used in different medical applications, including tissue engineering and drug-carries. The use of PLA in medical applications implies the evaluation of the human organism's response to the polymer inserting and to its degradation products. Consequently, within this study, we have investigated the solubility and ADMET profiles of the short oligomers (having the molecular weight lower than 3000 Da) resulting in degradation products of PLA. There is a linear decrease of the molar solubility of investigated oligomers with molecular weight. The results that are obtained also reveal that short oligomers of PLA have promising pharmacological profiles and limited toxicological effects on humans. These oligomers are predicted as potential inhibitors of the organic anion transporting peptides OATP1B1 and OATP1B3, they present minor probability to affect the androgen and glucocorticoid receptors, have a weak potential of hepatotoxicity, and may produce eye injuries. These outcomes may be used to guide or to supplement in vitro and/or in vivo toxicity tests such as to enhance the biodegradation properties of the biopolymer.</p>


Author(s):  
Jiankang Liu

Traditional Chinese Medicine (TCM) modernization has been proposed for many years, but the progress is still slow due to both ideological and technical obstacles. When I went to Japan in 1989, I found Japan has made a great progress on TCM by using modern technology. Therefore, I have studied a fine extract prepared from medicinal herbs (renamed Yi-Zhi-Yi-Shou, YZYS), a prescription of Dowager Cixi’s Yanling-Yishou-Dan of Qing Dynasty, with the current drug investigation strategies. I examined its antioxidant activity both in vitro and in vivo. The in-vitro studies found that YZYS possesses strong antioxidant capacity, such as scavenging various kinds of free radicals, and inhibits free radical-induced peroxidation of brain homogenate, microsomes, mitochondria, amino acids, deoxyribose and DNA. The in-vivo study with immobilization-induced emotional stress in rats, showed that YZYS effectively inhibits stress-induced stomach ulcers and oxidative damage in plasma and the brain. In addition, YZYS is shown to be non-toxic in both acute and chronic toxicity tests. These studies demonstrate that YZYS is a potent natural antioxidant and offer theoretical evidence for the beneficial effect of YZYS on health and brain functions, and that TCM prescriptions can be studied scientifically as modern medical drugs.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Ting-ye Wang ◽  
Jia-xu Chen

Curcumin is a compound extracted from the Curcuma longa L, which possesses a wide range of pharmacological effects. However, few studies have collected scientific evidence on its dual effect on angiogenesis. The present review gathered the fragmented information available in the literature to discuss the dual effect and possible mechanisms of curcumin on angiogenesis. Available information concerning the effect of curcumin on angiogenesis is compiled from scientific databases, including PubMed and Web of Science using the key term (curcumin and angiogenesis). The results were reviewed to identify relevant articles. Related literature demonstrated that curcumin has antiangiogenesis effect via regulating multiple factors, including proangiogenesis factor VEGF, MMPs, and FGF, both in vivo and in vitro, and could promote angiogenesis under certain circumstances via these factors. This paper provided a short review on bidirectional action of curcumin, which should be useful for further study and application of this compound that require further studies.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 416 ◽  
Author(s):  
Schneider ◽  
Koziolek ◽  
Weitschies

More than 50 years ago, the first concepts for gastroretentive drug delivery systems were developed. Despite extensive research in this field, there is no single formulation concept for which reliable gastroretention has been demonstrated under different prandial conditions. Thus, gastroretention remains the holy grail of oral drug delivery. One of the major reasons for the various setbacks in this field is the lack of predictive in vitro and in vivo test methods used during preclinical development. In most cases, human gastrointestinal physiology is not properly considered, which leads to the application of inappropriate in vitro and animal models. Moreover, conditions in the stomach are often not fully understood. Important aspects such as the kinetics of fluid volumes, gastric pH or mechanical stresses have to be considered in a realistic manner, otherwise, the gastroretentive potential as well as drug release of novel formulations cannot be assessed correctly in preclinical studies. This review, therefore, highlights the most important aspects of human gastrointestinal physiology and discusses their potential implications for the evaluation of gastroretentive drug delivery systems.


2020 ◽  
Vol 174 (2) ◽  
pp. 266-277
Author(s):  
Matthew D Davidson ◽  
Salman R Khetani

Abstract Primary human hepatocyte (PHH) cultures have become indispensable to mitigate the risk of adverse drug reactions in human patients. In contrast to dedifferentiating monocultures, coculture with nonparenchymal cells maintains PHH functions for 2–4 weeks. However, because the functional lifespan of PHHs in vivo is 200–400 days, it is desirable to further prolong PHH functions in vitro toward modeling chronic drug exposure and disease progression. Fasting has benefits on the longevity of organisms and the health of tissues such as the liver. We hypothesized that a culturing protocol that mimics dynamic fasting/starvation could activate starvation pathways and prolong PHH functional lifetime. To mimic starvation, serum and hormones were intermittently removed from the culture medium of micropatterned cocultures (MPCCs) containing PHHs organized onto collagen domains and surrounded by 3T3-J2 murine fibroblasts. A weekly 2-day starvation optimally prolonged PHH functional lifetime for 6+ weeks in MPCCs versus a decline after 3 weeks in nonstarved controls. The 2-day starvation also enhanced the functions of PHH monocultures for 2 weeks, suggesting direct effects on PHHs. In MPCCs, starvation activated 5' adenosine monophosphate-activated protein kinase (AMPK) and restricted fibroblast overgrowth onto PHH islands, thereby maintaining hepatic polarity. The effects of starvation on MPCCs were partially recapitulated by activating AMPK using metformin or growth arresting fibroblasts via mitomycin-C. Lastly, starved MPCCs demonstrated lower false positives for drug toxicity tests and higher drug-induced cytochrome-P450 activities versus nonstarved controls even after 5 weeks. In conclusion, intermittent serum/hormone starvation extends PHH functional lifetime toward enabling clinically relevant drug screening.


Sign in / Sign up

Export Citation Format

Share Document