Characterization and anaerobic treatability study of pre-hydrolysis liquor (PHL) from dissolving pulp mill

2013 ◽  
Vol 48 (2) ◽  
pp. 145-154 ◽  
Author(s):  
Dibyendu Debnath ◽  
Mayur M. Kale ◽  
Kripa S. Singh

Anaerobic degradation showed potential as the disposal solution for pre-hydrolysis liquor (PHL) from the dissolving pulp industries. This PHL contained pentose and hexose carbohydrates as monomeric (14.5 g/L) and oligomeric (39.7 g/L) forms along with acetic acid (10.38 g/L), furfural (1.14 g/L) and lignin (11.08 g/L). The average chemical oxygen demand (COD) value of the PHL was around 100 g/L with a biochemical oxygen demand (BOD5) value of 55 g/L. Respirometric studies at 35 °C showed a decrease in methane production with increasing concentration of PHL in the feed. Presence of slowly biodegradable substrates (furfural and lignin) in the feed was suspected to cause such behavior. Therefore, PHL was introduced to a master culture reactor to acclimatize the seed sludge to PHL as substrate. The seed microbes were able to adapt to furfural, but not to the entire lignin present in PHL feed. Lignin concentration going over a threshold value (approximately 7 g/L) was suspected to cause reactor failure. This anaerobic treatability study reflects on the potential of applying anaerobic digestion for PHL waste stream disposal and biogas production.

TAPPI Journal ◽  
2010 ◽  
Vol 9 (6) ◽  
pp. 16-21 ◽  
Author(s):  
NICHOLAS WOOD ◽  
HONGHI TRAN ◽  
EMMA MASTER

We examined the effectiveness of thermal, caustic, and sonication pretreatment methods in improving anaerobic conversion to biogas of secondary sludge samples obtained from a kraft mill and a sulfite mill. All three methods improved the anaerobic digestion rate and the biogas yield of the sludge samples. Thermal pretreatment was the most effective, followed closely by caustic pretreatment, and sonication the least. The total biogas productions per unit of chemical oxygen demand of sulfite sludge and kraft sludge samples were respectively 1.2 and 3 times higher with pretreatments than without. Also, the biogas production from the untreated sulfite mill sludge was 4 times higher than that from the untreated kraft mill sludge.


2013 ◽  
Vol 67 (9) ◽  
Author(s):  
Karina Michalska ◽  
Stanisław Ledakowicz

AbstractThis work studies the influence of the alkali pre-treatment of Sorghum Moench — a representative of energy crops used in biogas production. Solutions containing various concentrations of sodium hydroxide were used to achieve the highest degradation of lignocellulosic structures. The results obtained after chemical pre-treatment indicate that the use of NaOH leads to the removal of almost all lignin (over 99 % in the case of 5 mass % NaOH) from the biomass, which is a prerequisite for efficient anaerobic digestion. Several parameters, such as chemical oxygen demand, total organic carbon, total phenolic content, volatile fatty acids, and general nitrogen were determined in the hydrolysates thus obtained in order to define the most favourable conditions. The best results were obtained for the Sorghum treated with 5 mass % NaOH at 121°C for 30 min The hydrolysate thus achieved consisted of high total phenolic compounds concentration (ca. 4.7 g L−1) and chemical oxygen demand value (ca. 45 g L−1). Although single alkali hydrolysis causes total degradation of glucose, a combined chemical and enzymatic pre-treatment of Sorghum leads to the release of large amounts of this monosaccharide into the supernatant. This indicates that alkali pre-treatment does not lead to complete cellulose destruction. The high degradation of lignin structure in the first step of the pre-treatment rendered the remainder of the biomass available for enzymatic action. A comparison of the efficiency of biogas production from untreated Sorghum and Sorghum treated with the use of NaOH and enzymes shows that chemical hydrolysis improves the anaerobic digestion effectiveness and the combined pre-treatment could have great potential for methane generation.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2392 ◽  
Author(s):  
Marcin Dębowski ◽  
Marcin Zieliński ◽  
Marta Kisielewska ◽  
Joanna Kazimierowicz

The aim of this study was the performance evaluation of anaerobic digestion of dairy wastewater in a multi-section horizontal flow reactor (HFAR) equipped with microwave and ultrasonic generators to stimulate biochemical processes. The effects of increasing organic loading rate (OLR) ranging from 1.0 g chemical oxygen demand (COD)/L·d to 4.0 g COD/L·d on treatment performance, biogas production, and percentage of methane yield were determined. The highest organic compounds removals (about 85% as COD and total organic carbon—TOC) were obtained at OLR of 1.0–2.0 g COD/L·d. The highest biogas yield of 0.33 ± 0.03 L/g COD removed and methane content in biogas of 68.1 ± 5.8% were recorded at OLR of 1.0 g COD/L·d, while at OLR of 2.0 g COD/L·d it was 0.31 ± 0.02 L/COD removed and 66.3 ± 5.7%, respectively. Increasing of the OLR led to a reduction in biogas productivity as well as a decrease in methane content in biogas. The best technological effects were recorded in series with an operating mode of ultrasonic generators of 2 min work/28 min break. More intensive sonication reduced the efficiency of anaerobic digestion of dairy wastewater as well as biogas production. A low nutrient removal efficiency was observed in all tested series of the experiment, which ranged from 2.04 ± 0.38 to 4.59 ± 0.68% for phosphorus and from 9.67 ± 3.36 to 20.36 ± 0.32% for nitrogen. The effects obtained in the study (referring to the efficiency of wastewater treatment, biogas production, as well as to the results of economic analysis) proved that the HFAR can be competitive to existing industrial technologies for food wastewater treatment.


2020 ◽  
Vol 12 (12) ◽  
pp. 5222 ◽  
Author(s):  
A. Sinan Akturk ◽  
Goksel N. Demirer

The positive effects of conductive material supplementation on anaerobic digestion have been mainly investigated for single synthetic substrates, while its significance for real and complex organic wastes such as food waste has not been sufficiently investigated. This study investigated the effect of conductive material (biochar and magnetite) and trace metal supplementation on the anaerobic digestion of food waste by means of biochemical methane potential assays. The results indicated that the supplementation of biochar and trace metals improved both total biogas production and methane yields. A biochar dose of 2.0 and 5.0 g/L resulted in 11.2 ± 6.5 and 27.3 ± 9.5% increase in biogas and 8.3 ± 6.8 and 33.2 ± 2.8% increase in methane yield, respectively. Moreover, the same reactors demonstrated high food waste stabilization performance of over 80% chemical oxygen demand removal efficiency. These results indicate that biochar supplementation leads to more enhanced anaerobic digestion operation that could be through increased surface area for microbial growth and/or direct interspecies electron transfer mechanism. In turn, food waste will not only be stabilized but also valorized by anaerobic digestion at higher efficiencies that support sustainable waste management through both environmentally safe disposal and value-added generation.


2012 ◽  
Vol 531 ◽  
pp. 528-531 ◽  
Author(s):  
Na Wei

Anaerobic digestion is an economic and environmentally friendly technology for treating the biomass material-sewage sludge, but has some limitations, such as the low efficient biogass production. In this paper ultrasound was proposed as pre-treatment for effective sludge anaerobic digestion. Sludge anaerobic digestion experiments with ultrasonic pretreatment was investigated. It can be seen that this treatment effectively leaded to the increase of soluble chemical oxygen demand(SCOD) and volatile fatty acids(VFA)concentration. High concentration of VFA leaded to a increase in biogas production. Besides, the SV of sludge was reduced and the settling characteristics of sludge was improved after ultrasonic pretreatment. It can be concluded that sludge anaerobic digestion with ultrasonic pretreatment is an effective method for biomass material transformation.


2018 ◽  
Vol 64 (No. 3) ◽  
pp. 128-135 ◽  
Author(s):  
Radmard Seyed Abbas ◽  
Alizadeh Hossein Haji Agha ◽  
Seifi Rahman

The effects of thermal (autoclave and microwave irradiation (MW)) and thermo-chemical (autoclave and microwave irradiation – assisted NaOH 5N) pretreatments on the chemical oxygen demand (COD) solubilisation, biogas and methane production of anaerobic digestion kitchen waste (KW) were investigated in this study. The modified Gompertz equation was fitted to accurately assess and compare the biogas and methane production from KW under the different pretreatment conditions and to attain representative simulations and predictions. In present study, COD solubilisation was demonstrated as an effective effect of pretreatment. Thermo-chemical pretreatments could improve biogas and methane production yields from KW. A comprehensive evaluation indicated that the thermo-chemical pretreatments (microwave irradiation and autoclave- assisted NaOH 5N, respectively) provided the best conditions to increase biogas and methane production from KW. The most effective enhancement of biogas and methane production (68.37 and 36.92 l, respectively) was observed from MW pretreated KW along with NaOH 5N, with the shortest lag phase of 1.79  day, the max. rate of 2.38 l·day<sup>–1</sup> and ultimate biogas production of 69.8 l as the modified Gompertz equation predicted.


2016 ◽  
Vol 75 (4) ◽  
pp. 775-781 ◽  
Author(s):  
J. A. Barrios ◽  
U. Duran ◽  
A. Cano ◽  
M. Cisneros-Ortiz ◽  
S. Hernández

Anaerobic digestion of wastewater sludge is the preferred method for sludge treatment as it produces energy in the form of biogas as well as a stabilised product that may be land applied. Different pre-treatments have been proposed to solubilise organic matter and increase biogas production. Sludge electrooxidation with boron-doped diamond electrodes was used as pre-treatment for waste activated sludge (WAS) and its effect on physicochemical properties and biomethane potential (BMP) was evaluated. WAS with 2 and 3% total solids (TS) achieved 2.1 and 2.8% solubilisation, respectively, with higher solids requiring more energy. After pre-treatment, biodegradable chemical oxygen demand values were close to the maximum theoretical BMP, which makes sludge suitable for energy production. Anaerobic digestion reduced volatile solids (VS) by more than 30% in pre-treated sludge with a food to microorganism ratio of 0.15 g VSfed g−1 VSbiomass. Volatile fatty acids were lower than those for sludge without pre-treatment. Best pre-treatment conditions were 3% TS and 28.6 mA cm−2.


2014 ◽  
Vol 955-959 ◽  
pp. 2692-2696 ◽  
Author(s):  
Li Fan Liu ◽  
Yong Wei Liao ◽  
Jie Liang ◽  
Shu Ting Lai

The characteristics such as pH, dry matter, carbon concentration, the total solid and volatile solid of kitchen wastes produced by a canteen in Guangzhou were measured. The anaerobic digestion process performances were evaluated through the examination of operational conditions like activated sludge inoculation, temperature on SS, biogas production, COD concentration and pH in the reactor. When the proportion between kitchen wastes to seed sludge inoculation was 1:1, the biogas production reached the peak at 45 °C. The kitchen waste pH decreased at the first four days then increased adversely after 4 days digestion, but COD concentration showed the opposite variation.


2017 ◽  
Vol 35 (9) ◽  
pp. 967-977 ◽  
Author(s):  
Muzammil Anjum ◽  
Azeem Khalid ◽  
Samia Qadeer ◽  
Rashid Miandad

Catering waste and orange peel were co-digested using an anaerobic digestion process. Orange peel is difficult to degrade anaerobically due to the presence of antimicrobial agents such as limonene. The present study aimed to examine the feasibility of anaerobic co-digestion of catering waste with orange peel to provide the optimum nutrient balance with reduced inhibitory effects of orange peel. Batch experiments were conducted using catering waste as a potential substrate mixed in varying ratios (20–50%) with orange peel. Similar ratios were followed using green vegetable waste as co-substrate. The results showed that the highest organic matter degradation (49%) was achieved with co-digestion of catering waste and orange peel at a 50% mixing ratio (CF4). Similarly, the soluble chemical oxygen demand (sCOD) was increased by 51% and reached its maximum value (9040 mg l-1) due to conversion of organic matter from insoluble to soluble form. Biogas production was increased by 1.5 times in CF4 where accumulative biogas was 89.61 m3 t-1substrate compared with 57.35 m3 t-1substrate in the control after 80 days. The main reason behind the improved biogas production and degradation is the dilution of inhibitory factors (limonene), with subsequent provision of balanced nutrients in the co-digestion system. The tCOD of the final digestate was decreased by 79.9% in CF4, which was quite high as compared with 68.3% for the control. Overall, this study revealed that orange peel waste is a highly feasible co-substrate for anaerobic digestion with catering waste for enhanced biogas production.


2006 ◽  
Vol 53 (8) ◽  
pp. 233-241 ◽  
Author(s):  
P. Buffiere ◽  
D. Loisel ◽  
N. Bernet ◽  
J-P. Delgenes

The biochemical composition can be seen as a good indicator of both the biodegradability and the methane potential of a given waste. The work presented here is an attempt to elaborate a typology of wastes and to compare it to the anaerobic degradation characteristics. The first data indicate that there is a link between the ligno-cellulosic content of the waste and the biodegradability. When dealing with application to anaerobic digestion processes, having a tool to predict the ability of the waste to be degraded could be of the greatest interest for preventing failures, estimating biogas production, methane content, or for the management of co-digestion processes.


Sign in / Sign up

Export Citation Format

Share Document