scholarly journals Anaerobic–aerobic sequencing batch reactor treating azo dye containing wastewater: effect of high nitrate ions and salt

2017 ◽  
Vol 8 (2) ◽  
pp. 251-261 ◽  
Author(s):  
Ali Assadi ◽  
Morteza Naderi ◽  
Mohammad Reza Mehrasbi

Abstract In this work, the treatment of wastewater containing azo dye using anaerobic–aerobic sequencing batch reactor (SBR) based on mixed culture for its efficacy in decolorization and reduction in chemical oxygen demand (COD) under different operational conditions has been analyzed. Effects of hydraulic retention time (HRT), salts content and nitrate ion concentration on the rate and extent of color and COD removal through 180 days containing steady-state and acclimation periods were investigated. Solid retention time was kept constant at 20 days in all experiments. Almost complete decolorization could be achieved at dye concentrations between 5 and 500 mg/L, but the removal of COD decreased gradually from 90 to 65% with increasing dye concentration. The results indicated that color was mainly removed under anaerobic conditions and it was almost filled out within 2–3 h of the anaerobic residence time with up to 98% decolorization efficiency. Besides, cutting the cycle time from 24 to 8 h does not have an effect on color removal. Increases in HRT provide enough time for partial mineralization of COD and intermediates in SBR system. The rates of color and COD removals decreased with increasing salt content and nitrate ion concentration in the feed wastewater.

1993 ◽  
Vol 28 (7) ◽  
pp. 125-131 ◽  
Author(s):  
H. H. P. Fang ◽  
C. L. Y. Yeong ◽  
K. M. Book ◽  
C. M. Chiu

An 11-litre sequencing batch reactor (SBR) filled with fibrous packing was found to be very effective for the removal of not only Chemical Oxygen Demand (COD), but also nitrogen from synthetic wastewaters with 250-1034 mg/l of COD and 22-114 mg/l of nitrogen. As compared to the conventional SBR, mis system had a shorter cycle time by skipping the settling step. In addition, denitrification was efficiently conducted in the interior of the ‘bio-pompons', which were formed by the attached growth of biomass on the fibrous packings, even though the bulk of the reactor was under constant aeration. The system was tested at 12 loading conditions, ranging from 0.56 to 4.51 kg-COD/m3-day and from 0.04 to 0.49 kg-NH3−N/m3-day. On average, 95% of COD was removed within 2 h of aeration, while 57% of total nitrogen was removed after a retention time of 4-8 h.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 864
Author(s):  
Rolando Calero ◽  
Manuel Martínez

Background: The effect of solid retention time (SRT) over cheese whey substrates in a fermentation process drives changes in the composition of polyhydroxyalkanoates (PHAs) obtained. Volatile fatty acids produced in the first step of an anaerobic sequencing batch reactor were used as substrates to produce PHA using mixed microbial cultures under aerobic dynamic feeding conditions. Methods: Analytical methods were used for the standard analysis of parameters of interest including measuring the amount of ammonium and phosphate, chemical oxygen demand, among others. Results: The SRT increasing from 4 to 6 and 10 days produced changes in the distribution of volatile fatty acids produced. The polyhydroxybutyrate-hydroxyvalerate copolymers formed in the accumulation stage gave the following results: 58:42, 68:32 and 81:19 (%), referred to SRTs of 10, 6 and 4 days, respectively. The maximum PHA accumulation obtained at 10 days of SRT was 52% of the dry cell weight within 7 h, reaching a PHA productivity of 0.62 g L−1 h−1 and a storage yield of 0.37. Conclusion: The SRT variation impact on the distribution of volatile fatty acids in the acidogenic reactor and consequently on the PHA production and composition formed in the accumulation stage.


2017 ◽  
Vol 76 (5) ◽  
pp. 1044-1058 ◽  
Author(s):  
Amir Mohammad Mansouri ◽  
Ali Akbar Zinatizadeh

The performance of two bench scale activated sludge reactors with two feeding regimes, continuous fed (an up-flow aerobic/anoxic sludge fixed film (UAASFF) bioreactor) and batch fed (sequencing batch reactor (SBR)) with intermittent aeration, were evaluated for simultaneous nutrients (N, P) removal. Three significant variables (retention/reaction time, chemical oxygen demand (COD): N (nitrogen): P (phosphorus) ratio and aeration time) were selected for modeling, analyzing, and optimizing the process. At high retention time (≥6 h), two bioreactors showed comparable removal efficiencies, but at lower hydraulic retention time, the UAASFF bioreactor showed a better performance with higher nutrient removal efficiency than the SBR. The experimental results indicated that the total Kjeldahl nitrogen removal efficiency in the UAASFF increased from 70.84% to 79.2% when compared to SBR. It was also found that the COD removal efficiencies of both processes were over 87%, and total nitrogen and total phosphorus removal efficiencies were 79.2% and 72.98% in UAASFF, and 71.2% and 68.9% in SBR, respectively.


2013 ◽  
Vol 39 (2) ◽  
pp. 69-80 ◽  
Author(s):  
Chandrakant Thakur ◽  
Indra Deo Mall ◽  
Vimal Chandra Srivastava

Abstract In the present study, treatment of synthetic wastewater containing phenol, resorcinol and catechol was studied in a sequencing batch reactor (SBR). Parameters such as hydraulic retention time (HRT) and filling time have been optimized to increase the phenol, resorcinol, catechol and chemical oxygen demand (COD) removal efficiencies. More than 99% phenol, 95% resorcinol and 96% catechol and 89% COD removal efficiency was obtained at optimum conditions of HRT = 1.25 d and fill time = 1.5 h. The heating value of the sludge was found to be 12 MJ/kg. The sludge can be combusted to recover its energy value.


2003 ◽  
Vol 47 (10) ◽  
pp. 101-108 ◽  
Author(s):  
N. Thayalakumaran ◽  
R. Bhamidimarri ◽  
P.O. Bickers

Meat processing effluents are rich in nutrients (nitrogen: 75-200 mg L−1 and phosphorus: 20-40 mg L−1) and COD (800-2,000 mg L−1) after primary treatment. A laboratory scale sequencing batch reactor (SBR) was operated for the treatment of a beef processing effluent from slaughtering and boning operations. An effective SBR cycle was found for removal of COD, nitrogen and phosphorus at 22°C. The solid retention time was 15 days while the hydraulic retention time (HRT) was 2.5 days. The total nitrogen in the wastewater was reduced to less than 10 mg L−1, while the total phosphorus decreased to less than 1.0 mg L−1. The residual effluent soluble COD was found to be non-biodegradable as reflected by no further soluble COD removal following prolonged aeration. Removal of biodegradable soluble COD, ammonia nitrogen and soluble phosphate phosphorus of greater than 99% was achieved in the SBR. Good prediction of ammonia and nitrate nitrogen removal was obtained using IWA Activated Sludge Model. The operating cycle is shown to be appropriate to achieve simultaneous removal of COD and nutrients from the meat processing wastewater. Alkalinity and pH have an inverse relationship during the initial anaerobic and aerobic stages due to production and stripping of CO2. Use of a low level of DO in the final aerobic stage ensured complete ammonia removal and enhanced denitrification.


2019 ◽  
Vol 1 (2) ◽  
pp. 1
Author(s):  
Lindawati Lindawati

Sebuah Sequencing Batch Reactor (SBR) digunakan untuk mengevaluasi peranan Biochemical Oxygen Demand (BOD) biosensor dalam proses optimasi proses pengolahan nutrien karbon, nitrogen dan fosfat. Hasil penelitian menunjukkan bahwa BOD biosensor dapat dipergunakan untuk penentuan karbon organik, sehingga reduksi siklus SBR dapat dilakukan dan efisiensi proses meningkat. Pola konsumsi karbon organik ditemukan dengan adanya ‘tanda diam’ pada fase anoksik/ anaerobik, di mana dari tanda ini, fase aerobik dapat segera dimulai. Reduksi durasi siklus SBR dari 8 jam menjadi 4 jam meningkatkan efiesiensi pengolahan C, N dan P yang meningkat pula (hampir dua kali lebih tinggi).


2000 ◽  
Vol 42 (5-6) ◽  
pp. 171-178 ◽  
Author(s):  
S.-R. Ha ◽  
L. Qishan ◽  
S. Vinitnantharat

Treatment performance of COD in the presence of 2,4-dichlorophenol (2,4-DCP) was explored by using a biological activated carbon-sequencing batch reactor (BAC-SBR) system. Two COD levels of basic substrate were synthesized with a mixture of phenol and 2,4-dichlorophenol. Although effluent concentration was increased with reduction of sludge retention time (SRT) from 8-days to 3-days, treatment efficiency was indicated more than 90% of COD in all SRTs applied. Reactors operated with acclimated sludge could be expected to cope with quite high loading of inhibitory substances.


2015 ◽  
Vol 73 (4) ◽  
pp. 740-745 ◽  
Author(s):  
Jan Dries

On-line control of the biological treatment process is an innovative tool to cope with variable concentrations of chemical oxygen demand and nutrients in industrial wastewater. In the present study we implemented a simple dynamic control strategy for nutrient-removal in a sequencing batch reactor (SBR) treating variable tank truck cleaning wastewater. The control system was based on derived signals from two low-cost and robust sensors that are very common in activated sludge plants, i.e. oxidation reduction potential (ORP) and dissolved oxygen. The amount of wastewater fed during anoxic filling phases, and the number of filling phases in the SBR cycle, were determined by the appearance of the ‘nitrate knee’ in the profile of the ORP. The phase length of the subsequent aerobic phases was controlled by the oxygen uptake rate measured online in the reactor. As a result, the sludge loading rate (F/M ratio), the volume exchange rate and the SBR cycle length adapted dynamically to the activity of the activated sludge and the actual characteristics of the wastewater, without affecting the final effluent quality.


2016 ◽  
Vol 19 (4) ◽  
pp. 39-49
Author(s):  
Nhat The Phan ◽  
Van Thi Thanh Truong ◽  
Son Thanh Le ◽  
Biec Nhu Ha ◽  
Dan Phuoc Nguyen

In this study, a lab-scale Partial Nitritation Sequencing Batch Reactor (PNSBR) was implemented for treating high-ammonium old landfill leachate to yield an appropriate NO2—N/ NH4+-N ratio from 1/1 to 1.32/1 mixture as a pretreatment for subsequent Anammox. The objective of this study was to determine the optimal hydraulic retention time (HRT) at different influent ammonia concentrations for 210 days. The experimental results showed that with the influent ammonia concentrations of 500, 1000, 1500 and 2000 mg/L, HRT is 12 h, 21 h, 30 h and 48 h, respectively. The range of free ammonia (FA) concentration from 17 to 44 mg/L completely inhibited nitrite oxidizing bacteria (NOB) for long time operation. The COD removal efficiency was very low (6±2) %.


2018 ◽  
Vol 35 (12) ◽  
pp. 1322-1328
Author(s):  
Luis Enrique Lemus-Gómez ◽  
Maria Aurora Martínez-Trujillo ◽  
Isabel Membrillo-Venegas ◽  
Mayola García-Rivero

Sign in / Sign up

Export Citation Format

Share Document