scholarly journals Removing nitrogen and phosphorus simultaneously in stormwater runoff using permeable asphalt pavement system with a zeolite-regulated reservoir

2020 ◽  
Vol 10 (2) ◽  
pp. 106-119
Author(s):  
Hui Luo ◽  
Lin Guan ◽  
Zhaoqian Jing ◽  
Zeyu Zhang ◽  
Mengni Tao ◽  
...  

Abstract Stormwater runoff is identified as a major source of pollution in water bodies, and to limit the impact of these pollutants on groundwater quality, permeable asphalt pavement systems (PAPS) have been built worldwide. But so far, few have considered zeolite or regulated zeolite as a post-treatment in reservoirs in PAPS. This study aimed at investigating the efficiencies of modified zeolites in removing NH4+-N and TP from stormwater runoff and providing a novel insight into the research on the reuse of stormwater runoff by PAPS. The effect of PAPS with a zeolite-regulated reservoir on removing nutrient in stormwater was explored by artificial rainfall experiments and temporary storage experiments. Results showed that the removal rate of NH4+-N and TP in PAPS with a regulated-zeolite reservoir increased by 23.7% and 37.2%, respectively, during simulated rainfall events when compared to those without a regulated-zeolite reservoir. TP was mainly removed by the form of phosphorus precipitation such as Zr(H2PO4)2. Ion exchange and adsorption during the temporary storage period were considered as the main approaches for removal of NH4+-N and TP. This study can help develop an optimal strategy for the operation of PAPS in treating stormwater runoff from urban roads.

Author(s):  
Yao Zhao ◽  
Shuyu Zhou ◽  
Chen Zhao ◽  
Caterina Valeo

Porous asphalt (PA) pavement systems with and without a geotextile layer were investigated in laboratory experiments to determine the impacts of the geotextile layer on processes leading to lead ion (Pb2+) removal from stormwater runoff. Two types of geotextile membranes placed separately at upper and lower levels within the PA systems were tested in an artificial rainfall experiment using synthetic rainwater. The effect of storage capacity within the system on Pb2+ removal was also investigated. Results indicated that the use of a geotextile layer resulted in a longer delay to the onset of effluent. The non-woven geotextile membrane placed below the reservoir course improved the Pb2+ removal rate by 20% over removal efficiency of the system using a woven geotextile placed just below the surface but before the choker course. Pb2+ ions were reduced by over 98% in the effluent after being held for 24 hours in reservoir storage. Results suggest that temporary storage of stormwater in the reservoir course of a PA system is essential to improving Pb2+ ion removal capability.


Water ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1205 ◽  
Author(s):  
Yao Zhao ◽  
Shuyu Zhou ◽  
Chen Zhao ◽  
Caterina Valeo

Porous asphalt (PA) pavement systems with and without a geotextile layer were investigated in laboratory experiments to determine the impacts of the geotextile layer on the processes leading to lead ion (Pb2+) removal from stormwater runoff. Two types of geotextile membranes that were placed separately at upper and lower levels within the PA systems were tested in an artificial rainfall experiment while using synthetic rainwater. The effect of storage capacity within the system on Pb2+ removal was also investigated. Results indicated that the use of a geotextile layer resulted in a longer delay to the onset of effluent. The non-woven geotextile membrane that was placed below the reservoir course improved the Pb2+ removal rate by 20% over the removal efficiency of the system while using a woven geotextile placed just below the surface but before the choker course. Pb2+ ions were reduced by over 98% in the effluent after being held for 24 h in reservoir storage. Results suggest that temporary storage of stormwater in the reservoir course of a PA system is essential to improving Pb2+ ion removal capability.


2019 ◽  
pp. 392-400 ◽  
Author(s):  
Gunnar Kleuker ◽  
Christa M. Hoffmann

The harvest of sugar beet leads to root tip breakage and surface damage through mechanical impacts, which increase storage losses. For the determination of textural properties of sugar beet roots with a texture analyzer a reliable method description is missing. This study aimed to evaluate the impact of washing, soil tare, storage period from washing until measurement, sample distribution and number of roots on puncture and compression measurements. For this purpose, in 2017 comprehensive tests were conducted with sugar beet roots grown in a greenhouse. In a second step these tests were carried out with different Beta varieties from a field trial, and in addition, a flexural test was included. Results show that the storage period after washing and the sample distribution had an influence on the puncture and compression strength. It is suggested to wash the roots by hand before the measurement and to determine the strength no later than 48 h after washing. For reliable and comparable results a radial distribution of measurement points around the widest circumference of the root is recommended for the puncture test. The sample position of the compression test had an influence on the compressive strength and therefore, needs to be clearly defined. For the puncture and the compression test it was possible to achieve stable results with a small sample size, but with increasing heterogeneity of the plant stand a higher number of roots is required. The flexural test showed a high variability and is, therefore, not recommended for the analysis of sugar beet textural properties.


2006 ◽  
Vol 41 (1) ◽  
pp. 72-83 ◽  
Author(s):  
Zhe Zhang ◽  
Eric R. Hall

Abstract Parameter estimation and wastewater characterization are crucial for modelling of the membrane enhanced biological phosphorus removal (MEBPR) process. Prior to determining the values of a subset of kinetic and stoichiometric parameters used in ASM No. 2 (ASM2), the carbon, nitrogen and phosphorus fractions of influent wastewater at the University of British Columbia (UBC) pilot plant were characterized. It was found that the UBC wastewater contained fractions of volatile acids (SA), readily fermentable biodegradable COD (SF) and slowly biodegradable COD (XS) that fell within the ASM2 default value ranges. The contents of soluble inert COD (SI) and particulate inert COD (XI) were somewhat higher than ASM2 default values. Mixed liquor samples from pilot-scale MEBPR and conventional enhanced biological phosphorus removal (CEBPR) processes operated under parallel conditions, were then analyzed experimentally to assess the impact of operation in a membrane-assisted mode on the growth yield (YH), decay coefficient (bH) and maximum specific growth rate of heterotrophic biomass (µH). The resulting values for YH, bH and µH were slightly lower for the MEBPR train than for the CEBPR train, but the differences were not statistically significant. It is suggested that MEBPR simulation using ASM2 could be accomplished satisfactorily using parameter values determined for a conventional biological phosphorus removal process, if MEBPR parameter values are not available.


1995 ◽  
Vol 31 (10) ◽  
pp. 73-84 ◽  
Author(s):  
T. M. Iversen

The main environmental problems associated with fish farming in Denmark are attributable to the dam, the “dead reach” and nutrient and organic matter discharge. The environmental regulation of fish farming in Denmark started with the Environmental Protection Act of 1974, the Statutory Order of 1985 forbidding wet feed, and the Action Plan on the Aquatic Environment of 1987. In the case of freshwater fish farms, the latter was implemented through the measures stipulated in the 1989 Statutory Order on Fish Farms. The impact of Danish legislative measures to reduce and regulate the environmental effects of freshwater fish farms can be summarized as follows: - the number of fish farms has been reduced from about 800 in 1974 to about 500 at present; - production has tripled since 1974 and has been stable since 1989; - a change from wet to dry feed has reduced the environmental impact of the farms; - the national goals of the Action Plan on the Aquatic Environment of 1987 for reducing fish farm discharges of organic matter, nitrogen and phosphorus have been fulfilled. The main remaining problems are that: - the local impact of fish farms on downstream stream quality is still much too high in about 15% of cases; - the problem of the passage of migrating invertebrates and fish is still unsolved at some farms; - the problems posed by “dead reaches” are still unsolved. It is concluded that sustainable fish farming is possible in Denmark, but with the present technology production will have to be significantly reduced.


Water ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 105
Author(s):  
Argelia E. Rascón-Ramos ◽  
Martín Martínez-Salvador ◽  
Gabriel Sosa-Pérez ◽  
Federico Villarreal-Guerrero ◽  
Alfredo Pinedo-Alvarez ◽  
...  

Understanding soil moisture behavior in semi-dry forests is essential for evaluating the impact of forest management on water availability. The objective of the study was to analyze soil moisture based in storm observations in three micro-catchments (0.19, 0.20, and 0.27 ha) with similar tree densities, and subject to different thinning intensities in a semi-dry forest in Chihuahua, Mexico. Vegetation, soil characteristics, precipitation, and volumetric water content were measured before thinning (2018), and after 0%, 40%, and 80% thinning for each micro-catchment (2019). Soil moisture was low and relatively similar among the three micro-catchments in 2018 (mean = 8.5%), and only large rainfall events (>30 mm) increased soil moisture significantly (29–52%). After thinning, soil moisture was higher and significantly different among the micro-catchments only during small rainfall events (<10 mm), while a difference was not noted during large events. The difference before–after during small rainfall events was not significant for the control (0% thinning); whereas 40% and 80% thinning increased soil moisture significantly by 40% and 53%, respectively. Knowledge of the response of soil moisture as a result of thinning and rainfall characteristics has important implications, especially for evaluating the impact of forest management on water availability.


Sexualities ◽  
2020 ◽  
pp. 136346072098169
Author(s):  
Aidan McKearney

This article focuses on the experiences of gay men in the rural west and northwest region of Ireland, during a period of transformational social and political change in Irish society. These changes have helped facilitate new forms of LGBTQI visibility, and local radicalism in the region. Same-sex weddings, establishment of rural LGBT groups and marching under an LGBT banner at St Patricks Day parades would have been unthinkable in the recent past; but they are now becoming a reality. The men report continuing challenges in their lives as gay men in the nonmetropolitan space, but the emergence of new visibility, voice and cultural acceptance of LGBT people is helping change their lived experiences. The study demonstrates the impact of local activist LGBT citizens. Through their testimonies we can gain an insight into the many, varied and interwoven factors that have interplayed to create the conditions necessary for the men to: increasingly define themselves as gay to greater numbers of people in their localities; to embrace greater visibility and eschew strategies of silence; and aspire to a host of legal, political, cultural and social rights including same-sex marriage. Organic forms of visibility and local radicalism have emerged in the region and through an analysis of their testimonies we can see how the men continue to be transformed by an ever-changing landscape.


2021 ◽  
Vol 13 (15) ◽  
pp. 8552
Author(s):  
Vahid Alimohammadi ◽  
Mehdi Maghfouri ◽  
Delaram Nourmohammadi ◽  
Pejman Azarsa ◽  
Rishi Gupta ◽  
...  

Clean water is a vital need for all living creatures during their lifespan. However, contaminated stormwater is a major issue around the globe. A wide range of contaminants, including heavy metals, organic and inorganic impurities, has been discovered in stormwater. Some commonly utilized methods, such as biological, physical and chemical procedures, have been considered to overcome these issues. However, these current approaches result in moderate to low contaminant removal efficiencies for certain classes of contaminants. Of late, filtration and adsorption processes have become more featured in permeable concretes (PCs) for the treatment of stormwater. As nanoparticles have vast potential and unique characterizations, such as a higher surface area to cure polluted stormwater, employing them to improve permeable concretes’ capabilities in stormwater treatment systems is an effective way to increase filtration and adsorption mechanisms. The present study reviews the removal rate of different stormwater contaminants such as heavy metals, organic and other pollutants using nanoparticle-improved PC. The application of different kinds of nanomaterials in PC as porous media to investigate their influences on the properties of PC, including the permeability rate, compressive strength, adsorption capacity and mix design of such concrete, was also studied. The findings of this review show that different types of nanomaterials improve the removal efficiency, compressive strength and adsorption capacity and decrease the infiltration rate of PC during the stormwater treatment process. With regard to the lack of comprehensive investigation concerning the use of nanomaterials in PC to treat polluted stormwater runoff, this study reviews 242 published articles on the removal rate of different stormwater contaminants by using PC improved with nanoparticles.


2020 ◽  
Vol 12 (1) ◽  
pp. 232-241
Author(s):  
Na Ta ◽  
Chutian Zhang ◽  
Hongru Ding ◽  
Qingfeng Zhang

AbstractTillage and slope will influence soil surface roughness that changes during rainfall events. This study tests this effect under controlled conditions quantified by geostatistical and fractal indices. When four commonly adopted tillage practices, namely, artificial backhoe (AB), artificial digging (AD), contour tillage (CT), and linear slope (CK), were prepared on soil surfaces at 2 × 1 × 0.5 m soil pans at 5°, 10°, or 20° slope gradients, artificial rainfall with an intensity of 60 or 90 mm h−1 was applied to it. Measurements of the difference in elevation points of the surface profiles were taken before rainfall and after rainfall events for sheet erosion. Tillage practices had a relationship with fractal indices that the surface treated with CT exhibited the biggest fractal dimension D value, followed by the surfaces AD, AB, and CK. Surfaces under a stronger rainfall tended to have a greater D value. Tillage treatments affected anisotropy differently and the surface CT had the strongest effect on anisotropy, followed by the surfaces AD, AB, and CK. A steeper surface would have less effect on anisotropy. Since the surface CT had the strongest effect on spatial variability or the weakest spatial autocorrelation, it had the smallest effect on runoff and sediment yield. Therefore, tillage CT could make a better tillage practice of conserving water and soil. Simultaneously, changes in semivariogram and fractal parameters for surface roughness were examined and evaluated. Fractal parameter – crossover length l – is more sensitive than fractal dimension D to rainfall action to describe vertical differences in soil surface roughness evolution.


2021 ◽  
Vol 13 (6) ◽  
pp. 3209
Author(s):  
Ricardo Rubio-Ramírez ◽  
Rubén Jerves-Cobo ◽  
Diego Mora-Serrano

Several cities in developing countries are challenging the permanent process of urbanization. This generates a great disturbance on the hydrological response of the urbanized area during rainfall events, which can cause floods. Among the disturbances that urbanized basins may suffer, it is found that variations in rain losses (hydrological abstractions) can be estimated by the named volumetric runoff coefficient (CVOL) methodology. In the present study, this methodology is used in an attempt to estimate the hydrological abstraction of two nearby urbanized basins, with different degrees of impermeability, located in the city of Cuenca in Ecuador. The data for that analysis were collected between April and May of 2017. The results obtained indicate that the micro-basin with the largest impervious area presents the higher initial hydrological losses, the higher rate of decrease in abstractions, and the higher stormwater runoff flows per unit area. In addition, the abstractions found in the two urban micro-basins show great sensitivity to the maximum rainfall intensity and do not relate to the antecedent soil moisture. These results demonstrate the importance of having higher pervious surfaces in urbanized areas because they lead to reduce negative impacts associated with increased stormwater runoff on impervious surfaces.


Sign in / Sign up

Export Citation Format

Share Document