scholarly journals Process evaluation of urban river replenished with reclaimed water from a wastewater treatment plant based on the risk of algal bloom and comprehensive acute toxicity

Author(s):  
Danyan Sun ◽  
Xiaohu Lin ◽  
Zhibo Lu ◽  
Juwen Huang ◽  
Guangming Li ◽  
...  

Abstract Municipal wastewater reuse has an important role to play with scarce water resources and serious water pollution. However, the impact of reclaimed water on the aquatic ecology and organisms of the receiving water needs to be assessed. This study investigated one ecological restoration project of an urban river replenished with reclaimed water, and evaluated the risk of algal bloom and acute biological toxicity in the river. Results showed that the concentrations of permanganate index and ammonia nitrogen in the river could stably remain below the standard values, the concentrations of total phosphorus were high and most of the monitoring values were between 0.42 and 0.86 mg/L. The content of chlorophyll a was relatively lower, ranging from 0.06 to 0.10 mg/m3. The maximum value of Fv/Fm was 0.42, which was lower than the algal bloom prediction threshold of 0.63. Moreover, the results of luminescence inhibition rate on luminescent bacteria showed that the reclaimed water did not cause significant biological toxicity to the aquatic ecology. The study suggested that implementing urban reclaimed water reuse projects requires a series of ecological purification and restoration technologies in the receiving water, which can effectively guarantee the stability of water quality and the safety of water ecological environment.

2000 ◽  
Vol 41 (7) ◽  
pp. 31-37 ◽  
Author(s):  
E. Carraro ◽  
E. Fea ◽  
S. Salva ◽  
G. Gilli

The aim of this study was to assess the impact of a municipal wastewater treatment plant (MWTP) on the occurrence of Cryptosporidium oocysts and Giardia cysts in the receiving water. All MWTP effluent samples were Giardia and Cryptosporidium contaminated, although low mean values were found for both parasites (0.21±0.06 oocysts/L; 1.39±0.51 cysts/L). Otherwise, in the raw sewage a greater concentration was detected (4.5±0.3 oocysts/L; 53.6±6.8 cysts/L). The major occurrence of Giardia over Cryptosporidium, both in the influent and in the effluent of the MWTP, is probably related to the human sewage contribution to the wastewater. Data on protozoa contamination of the receiving water body demonstrated similar concentrations in the samples collected before (0.21±0.07 oocysts/L; 1.31±0.38 cysts/L) and after (0.17±0.09 oocysts/L and 1.01±1.05 cysts/L) the plant effluent discharge. The results of this study suggest that the MWTP has no impact related to Giardia and Cryptosporidium river water contamination, and underline the need for investigation into the effectiveness of these protozoa removal by less technologically advanced MWTPs which are the most widespread and could probably show a lower ability to reduce protozoa.


Author(s):  
Robert Kreuzig ◽  
Jaqueline Haller-Jans ◽  
Cornelia Bischoff ◽  
Johannes Leppin ◽  
Jörn Germer ◽  
...  

AbstractFor a novel approach of resource-efficient water reuse, a municipal wastewater treatment plant was extended at pilot scale for advanced wastewater treatment, i.e., ozonation and biological activated carbon filtration, and a hydroponic system for reclaimed water driven lettuce cultivation. The treatment specific wastewater lines with the corresponding lettuce plants, differentiated into roots and shoots, were monitored for priority wastewater micropollutants, i.e., acesulfame (sweetener), caffeine (stimulant), carbamazepine, diclofenac, ibuprofen, sulfamethoxazole with acetyl-sulfamethoxazole (human pharmaceuticals), 1H-benzotriazole, and 4/5-methylbenzotriazole (industrial chemicals). As clearly demonstrated, conventional tertiary treatment could not efficiently clean up wastewater. Removal efficiencies ranged from 3% for carbamazepine to 100% for ibuprofen. The resulting pollution of the hydroponic water lines led to the accumulation of acesulfame, carbamazepine, and diclofenac in lettuce root systems at 32.0, 69.5, and 135 μg kg−1 and in the uptake of acesulfame and carbamazepine into lettuce shoots at 23.4 and 120 μg kg−1 dry weight, respectively. In contrast, both advanced treatment technologies when operating under optimized conditions achieved removal efficiencies of > 90% also for persistent micropollutants. Minimizing the pollution of reclaimed water thus met one relevant need for hydroponic lettuce cultivation. Graphical abstract


2001 ◽  
Vol 43 (10) ◽  
pp. 267-275 ◽  
Author(s):  
J. E. Drewes ◽  
P. Fox

The scope of this study was to develop a model to assess the impact of source water quality on reclaimed water used for indirect potable reuse. The source water impact model (SWIM) considered source water qualities, water supply distribution data, water use and the impact of wastewater treatment to calculate reclaimed water quality. It was applied for sulfate, chloride, and dissolved organic carbon (DOC) at four water reuse sites in Arizona and California. SWIM was able to differentiate between the amount of salts derived by drinking water sources and the amount added by consumers. At all sites, the magnitude of organic residuals in reclaimed water was strongly effected by the concentration of organics in corresponding water sources and effluent-derived organic matter. SWIM can be used as a tool to predict reclaimed water quality in existing or planned water reuse systems.


2002 ◽  
Vol 45 (3) ◽  
pp. 229-237 ◽  
Author(s):  
T. Frehmann ◽  
A. Niemann ◽  
P. Ustohal ◽  
W.F. Geiger

Four individual mathematical submodels simulating different subsystems of urban drainage were intercoupled to an integral model. The submodels (for surface runoff, flow in sewer system, wastewater treatment plant and receiving water) were calibrated on the basis of field data measured in an existing urban catchment investigation. Three different strategies for controlling the discharge in the sewer network were defined and implemented in the integral model. The impact of these control measures was quantified by representative immission state-parameters of the receiving water. The results reveal that the effect of a control measure may be ambivalent, depending on the referred component of a complex drainage system. Furthermore, it is demonstrated that the drainage system in the catchment investigation can be considerably optimised towards environmental protection and operation efficiency if an appropriate real time control on the integral scale is applied.


2001 ◽  
Vol 43 (10) ◽  
pp. 9-16 ◽  
Author(s):  
S. W. Hermanowicz ◽  
E. Sanchez Diaz ◽  
J. Coe

This paper presents a successful water reclamation and reuse project in the San Francisco Bay area. The project, which includes a water reclamation facility and a separate distribution system, is operated by a wastewater utility and reclaims approximately 4% of its dry-weather flow. Project history, its design and implementation are further discussed. Planning, and especially demand analysis, was critical for project development. Earlier attempts of water reuse were not successful because reclaimed water quality did not match the requirements of potential large industrial customers. Current customers are a mix of public, commercial and residential users who apply the reclaimed water solely for landscape irrigation. In addition, a large fraction of the reclaimed water is used internally in the main wastewater treatment plant. Early connection of largest customers, innovative collaboration with a neighboring reclamation project and cooperation of the local water supplier were very important for project success. Distribution of internal process water consumes most energy. The second major energy use is for the treatment of reclaimed water while distribution of reclaimed water to external customers requires least energy.


2014 ◽  
Vol 69 (7) ◽  
pp. 1359-1372 ◽  
Author(s):  
Oskar Modin ◽  
David J. I. Gustavsson

Microbial bioelectrochemical systems (BESs) utilize living microorganisms to drive oxidation and reduction reactions at solid electrodes. BESs could potentially be used at municipal wastewater treatment plants (WWTPs) to recover the energy content of organic matter, to produce chemicals useful at the site, or to monitor and control biological treatment processes. In this paper, we review bioelectrochemical technologies that could be applied for municipal wastewater treatment. Sjölunda WWTP in Malmö, Sweden, is used as an example to illustrate how the different technologies potentially could be integrated into an existing treatment plant and the impact they could have on the plant's utilization of energy and chemicals.


Sign in / Sign up

Export Citation Format

Share Document