Prospects, problems and pitfalls of urban water reuse: a case study

2001 ◽  
Vol 43 (10) ◽  
pp. 9-16 ◽  
Author(s):  
S. W. Hermanowicz ◽  
E. Sanchez Diaz ◽  
J. Coe

This paper presents a successful water reclamation and reuse project in the San Francisco Bay area. The project, which includes a water reclamation facility and a separate distribution system, is operated by a wastewater utility and reclaims approximately 4% of its dry-weather flow. Project history, its design and implementation are further discussed. Planning, and especially demand analysis, was critical for project development. Earlier attempts of water reuse were not successful because reclaimed water quality did not match the requirements of potential large industrial customers. Current customers are a mix of public, commercial and residential users who apply the reclaimed water solely for landscape irrigation. In addition, a large fraction of the reclaimed water is used internally in the main wastewater treatment plant. Early connection of largest customers, innovative collaboration with a neighboring reclamation project and cooperation of the local water supplier were very important for project success. Distribution of internal process water consumes most energy. The second major energy use is for the treatment of reclaimed water while distribution of reclaimed water to external customers requires least energy.

2002 ◽  
Vol 45 (8) ◽  
pp. 23-33 ◽  
Author(s):  
Takashi Asano

Water reclamation and reuse provides a unique and viable opportunity to augment traditional water supplies. As a multi-disciplined and important element of water resources development and management, water reuse can help to close the loop between water supply and wastewater disposal. Effective water reuse requires integration of water and reclaimed water supply functions. The successful development of this dependable water resource depends upon close examination and synthesis of elements from infrastructure and facilities planning, wastewater treatment plant siting, treatment process reliability, economic and financial analyses, and water utility management. In this paper, fundamental concepts of water reuse are discussed including definitions, historical developments, the role of water recycling in the hydrologic cycle, categories of water reuse, water quality criteria and regulatory requirements, and technological innovations for the safe use of reclaimed water. The paper emphasizes the integration of this alternative water supply into water resources planning, and the emergence of modern water reclamation and reuse practices from wastewater to reclaimed water to repurified water.


1996 ◽  
Vol 33 (10-11) ◽  
pp. 59-70 ◽  
Author(s):  
Richard A. Mills ◽  
Takashi Asano

Stimulated by droughts and inability to construct new freshwater projects, water suppliers in California, U.S.A. have taken a heightened interest in water reclamation in the last decade. Since 1980 the California State Water Resources Control Board has approved financial assistance to local water supply agencies to design and construct water reclamation facilities. Nineteen of these are now operating. There is an opportunity to assess how well projects are performing in relation to their planned objectives, in particular, deliveries of reclaimed water to users. Based on reports on many of these projects, it is found that two-thirds of the projects are delivering 75 percent or less of the expected amounts of water. Data are provided on project performance. A discussion is provided of the problems encountered on many of the projects that account for these deficiencies in yields and have caused other problems in implementation.


1996 ◽  
Vol 33 (10-11) ◽  
pp. 451-462 ◽  
Author(s):  
James Crook ◽  
Rao Y. Surampalli

Increasing demands on water resources for domestic, commercial, industrial, and agricultural purposes have made water reclamation and reuse an attractive option for conserving and extending available water supplies. Also, many water reuse projects are implemented to eliminate a source of contamination in surface waters or as a least-cost alternative to meeting stringent discharge requirements. Reclaimed water applications range from pasture irrigation to augmentation of potable water supplies. Water reclamation and reuse criteria are principally directed at health protection. There are no federal regulations governing water reuse in the U.S.; hence, the regulatory burden rests with the individual states. This has resulted in differing standards among states that have developed criteria. This paper summarizes and compares the criteria from some states that have developed comprehensive regulations. Guidelines published by the US. EPA and the rationale behind them are presented for numerous types of reclaimed water applications.


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 366 ◽  
Author(s):  
Jonathan R. Bailey ◽  
Sajjad Ahmad ◽  
Jacimaria R. Batista

With an ever-increasing world population and the resulting increase in industrialization and agricultural practices, depletion of one of the world’s most important natural resources, water, is inevitable. Water reclamation and reuse is the key to protecting this natural resource. Water reclamation using smaller decentralized wastewater treatment plants, known as satellite water reuse plants (WRP), has become popular in the last decade. Reuse plants have stricter standards for effluent quality and require a smaller land footprint (i.e., real estate area). They also require additional treatment processes and advanced treatment technologies. This greatly increases the energy consumption of an already energy intensive process, accentuating even more the nexus between energy use and wastewater processing. With growing concerns over the use of nonrenewable energy sources and resulting greenhouse gas (GHG) emissions, WRPs are in need of energy evaluations. This paper contrasts the energy consumption of both conventional and advanced treatment processes in satellite WRPs. Results of this research provide a means for engineers and wastewater utilities to evaluate unit processes based on energy consumption as well as a foundation for making decisions regarding the sustainability of using advanced treatment technologies at reuse facilities.


1986 ◽  
Vol 18 (3) ◽  
pp. 23-33 ◽  
Author(s):  
R. J. Frankel ◽  
A. Phongsphetraratana

Two food processing industries in Thailand, namely pineapple canning and tuna/sardine canning, were studied over a 10 year period to document effects of water reuse, recycling and resource recovery (both energy and product) on waste treatment needs and actual operations. Changes in terms of water consumed, energy required, waste generated, and costs per ton of raw material processed were calculated. Lower overall annual costs resulted from all water conservation and energy recovery schemes even though stricter pollution control laws were the motivating factor behind the changes. Unit design parameters of water use, energy use and waste load generated per ton of raw material processed are included for both industries to permit extrapolations for future waste treatment plant designs.


2013 ◽  
Vol 68 (7) ◽  
pp. 1556-1565 ◽  
Author(s):  
Parinda Thayanukul ◽  
Futoshi Kurisu ◽  
Ikuro Kasuga ◽  
Hiroaki Furumai

Microbial regrowth causes problems during water reuse. Comprehensive understanding of the microorganisms that can regrow in reclaimed water and their substrate requirements are necessary. In this study, potential regrowth organisms were isolated from seven water reclamation plants in Japan. Based on 16S rDNA analysis, the isolates were grouped into 34 operational taxonomic units, belonging to Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes. Substrate utilization profiling using Biolog microplate™ classified the isolates into four groups. Bacteria in Cluster 1 (e.g., Methylobacterium sp. and Acinetobacter sp.) mainly utilized polymers, esters, amides, and alcohol. Isolates in Cluster 2 (e.g., Flavobacterium sp. and Microbacterium sp.) preferred to utilize polymers, carbohydrates, and esters. Isolates in Cluster 3 (e.g., Pseudomonas sp. and Acidovorax sp.) mainly utilized esters, carboxylic acids, and amino acids. Isolates in Cluster 4 (e.g., Enterobacter sp. and Rhodococcus sp.) utilized carbohydrates, esters, and amino acids. All isolates grew in reclaimed water treated by sand filtration, whereas some isolates could not grow in reclaimed water treated by coagulation and ozonation. Most bacteria in the same Biolog clusters exhibited similar growth characteristics in water samples. The potential of bacteria to regrow in reclaimed water likely depended on substrate requirement.


2014 ◽  
Vol 507 ◽  
pp. 688-692 ◽  
Author(s):  
Hui Cong Pang ◽  
Can Can Zhang ◽  
Tai Zhong Gao

The paper introduced the design parameters of a reclaimed water island engineering in a power plant. The total processing scale was 3.84×104m3/d. The raw water source of this project was the further treated wastewater from municipal treatment plant. The combination of BAF-Lime Conglomeration and Clarification-Filtration was employed in the design for advanced treatment. The operation results showed that the quality of treated water with this process in the reclaimed water island could satisfy the design requirement and the treated water was reused as recirculating cooling water in a thermal power plant.


2018 ◽  
Vol 8 (4) ◽  
pp. 679-687 ◽  
Author(s):  
L. G. Mendoza-Espinosa ◽  
L. W. Daesslé

Abstract The city of Ensenada (Baja California, Mexico) experiences severe water restrictions for urban and agriculture use, and reclaimed water (RW) for crop irrigation and aquifer infiltration has been identified as a promising water management option. This paper presents the path followed to consolidate the reclamation scheme that included monitoring programs on RW, groundwater, and agricultural soil. Seventy-nine percent of the RW samples complied with the particular discharge permit for El Naranjo wastewater treatment plant (WWTP), yet the local water utility has to have a better control of its wastewater treatment plant to avoid spikes of fecal coliforms. The presence of fecal coliforms in soil samples at surface and 30–60 cm depths indicates that farm workers could be at risk during the handling of the product, so it is highly recommended that workers be provided with clothes that will protect them from direct contact with water and soil. Results from monitoring wells adjacent to Las Ánimas and San Carlos creeks showed, on some occasions, the presence of fecal and total coliforms that could indicate infiltration of RW. In conclusion, technical aspects can be monitored and controlled yet the most challenging aspects that remain are social and political which require extensive negotiation and institutional arrangements.


Author(s):  
Robert Kreuzig ◽  
Jaqueline Haller-Jans ◽  
Cornelia Bischoff ◽  
Johannes Leppin ◽  
Jörn Germer ◽  
...  

AbstractFor a novel approach of resource-efficient water reuse, a municipal wastewater treatment plant was extended at pilot scale for advanced wastewater treatment, i.e., ozonation and biological activated carbon filtration, and a hydroponic system for reclaimed water driven lettuce cultivation. The treatment specific wastewater lines with the corresponding lettuce plants, differentiated into roots and shoots, were monitored for priority wastewater micropollutants, i.e., acesulfame (sweetener), caffeine (stimulant), carbamazepine, diclofenac, ibuprofen, sulfamethoxazole with acetyl-sulfamethoxazole (human pharmaceuticals), 1H-benzotriazole, and 4/5-methylbenzotriazole (industrial chemicals). As clearly demonstrated, conventional tertiary treatment could not efficiently clean up wastewater. Removal efficiencies ranged from 3% for carbamazepine to 100% for ibuprofen. The resulting pollution of the hydroponic water lines led to the accumulation of acesulfame, carbamazepine, and diclofenac in lettuce root systems at 32.0, 69.5, and 135 μg kg−1 and in the uptake of acesulfame and carbamazepine into lettuce shoots at 23.4 and 120 μg kg−1 dry weight, respectively. In contrast, both advanced treatment technologies when operating under optimized conditions achieved removal efficiencies of > 90% also for persistent micropollutants. Minimizing the pollution of reclaimed water thus met one relevant need for hydroponic lettuce cultivation. Graphical abstract


Sign in / Sign up

Export Citation Format

Share Document