Two Year Survey of Indicator Bacteria and Enteroviruses during the Preparation of Drinking Water from Three Water Treatment Plants in Paris Suburbs

1986 ◽  
Vol 18 (10) ◽  
pp. 107-107 ◽  
Author(s):  
J. C. Joret ◽  
T. Dupin ◽  
A. Hassen ◽  
F. Agbalika ◽  
P. Hartemann

Three conventional drinking water treatment plants were sampled monthly during a two year period for the removal of indicator bacteria and enteroviruses. Most 20 ℓ samples of raw river water were positive for viruses (principally Coxsackievirus B4 and B6, and echoviruses) with average virus concentrations varying from 0-3.5 PFU/ℓ for the less polluted river water (103-104 fecal coliforms/100 mℓ) to 0.1-20 PFU/ℓ for the highly polluted source (104-105 fecal coliforms/100 mℓ). In spite of these high levels of bacterial contamination, no viruses were detected from the 72 samples of 1 000 ℓ finished water. These results are discussed in regard to the virus removal efficiency of each treatment step previously evaluated by both pilot plant and full-scale water treatment plant studies. The mean virus removal was found to be 0-85% for storage (3 day period) of river water, 64-98% for preozonation (0.8 mg/ℓ/2-3 minutes), 31-90% for clarification by coagulation, flocculation and decantation, and 77-99% for sand filtration (5m/h). Total coliform counts were found to be good indicators of treatment for the presence of viruses in postozonated (1.5 mg/ℓ/10 min) water.

2000 ◽  
Vol 46 (6) ◽  
pp. 565-576 ◽  
Author(s):  
Pierre Payment ◽  
Aminata Berte ◽  
Michèle Prévost ◽  
Bruno Ménard ◽  
Benoît Barbeau

A 300-km portion of the Saint Lawrence hydrological basin in the province of Québec (Canada) and 45 water treatment plants were studied. River water used by drinking water treatment plants was analyzed (6-L sample volumes) to determine the level of occurrence of bacterial indicators (total coliforms, fecal coliforms, and Clostridium perfringens) and pathogens (Giardia lamblia, Cryptosporidium, human enteric viruses). Pathogens and bacterial indicators were found at all sites at a wide range of values. Logistic regression analysis revealed significant correlations between the bacterial indicators and the pathogens. Physicochemical and treatment practices data were collected from most water treatment plants and used to estimate the level of removal of pathogens achieved under cold (0°C-4°C) and warm (20°C-25°C) water temperature conditions. The calculated removal values were then used to estimate the annual risk of Giardia infection using mathematical models and to compare the sites. The estimated range of probability of infection ranged from 0.75 to less than 0.0001 for the populations exposed. Given the numerous assumptions made, the model probably overestimated the annual risk, but it provided comparative data of the efficacy of the water treatment plants and thereby contributes to the protection of public health.Key words: public health, drinking water, health risk, pathogen occurrence.


2019 ◽  
Vol 24 (1) ◽  
pp. 135-163
Author(s):  
Jader Martínez Girón ◽  
Jenny Vanessa Marín-Rivera ◽  
Mauricio Quintero-Angel

Population growth and urbanization pose a greater pressure for the treatment of drinking water. Additionally, different treatment units, such as decanters and filters, accumulate high concentrations of iron (Fe) and manganese (Mn), which in many cases can be discharged into the environment without any treatment when maintenance is performed. Therefore, this paper evaluates the effectiveness of vertical subsurface wetlands for Fe and Mn removal from wastewater in drinking water treatment plants, taking a pilot scale wetland with an ascending gravel bed with two types of plants: C. esculenta and P. australis in El Hormiguero (Cali, Colombia), as an example. The pilot system had three upstream vertical wetlands, two of them planted and the third one without a plant used as a control. The wetlands were arranged in parallel and each formed by three gravel beds of different diameter. The results showed no significant difference for the percentage of removal in the three wetlands for turbidity (98 %), Fe (90 %), dissolved Fe (97 %) and Mn (98 %). The dissolved oxygen presented a significant difference between the planted wetlands and the control. C. esculenta had the highest concentration of Fe in the root with (103.5 ± 20.8) µg/g ; while P. australis had the highest average of Fe concentrations in leaves and stem with (45.7 ± 24) µg/g and (41.4 ± 9.1) µg/g, respectively. It is concluded that subsurface wetlands can be an interesting alternative for wastewater treatment in the maintenance of drinking water treatment plants. However, more research is needed for the use of vegetation or some technologies for the removal or reduction of the pollutant load in wetlands, since each drinking water treatment plant will require a treatment system for wastewater, which in turn requires a wastewater treatment system as well.


2019 ◽  
Vol 19 (8) ◽  
pp. 2330-2337
Author(s):  
Susumu Hasegawa ◽  
Yasuhiro Tanaka ◽  
Naokazu Wake ◽  
Ryosuke Takagi ◽  
Hideto Matsuyama

Abstract Recently, membrane filtration systems have become increasingly common in drinking water treatment plants. In this industry, preventing membrane fouling is of utmost importance. Many studies on the relationship between raw water components and membrane fouling have been performed in laboratory conditions. However, very few studies have analyzed the components of foulants on the fouled membrane as operated in actual drinking water treatment plants. By analyzing these components in plant-conditions, membrane fouling will be more effectively prevented. In this study, we analyzed the components of foulants extracted with 0.1 N NaOH from a fouled membrane operated in a drinking water treatment plant in Japan. Our analysis revealed that the main foulants were humic substances. In order to dissolve the accumulated humic substances, additional chemical cleaning was attempted with 500 ppm sodium hypochlorite. As a result, it was found that humic substances were dissolved and filtration resistance significantly decreased. Additionally, the removal of inorganic foulants was also greater after chemical cleaning with 500 ppm sodium hypochlorite, as inorganic foulants trapped within humic substances were released to the membrane surface as hydroxides by the additional sodium hypochlorite cleaning and were dissolved by the periodic citric acid cleaning.


2005 ◽  
Vol 71 (2) ◽  
pp. 1042-1050 ◽  
Author(s):  
Gerald Sedmak ◽  
David Bina ◽  
Jeffrey MacDonald ◽  
Lon Couillard

ABSTRACT Reoviruses, enteroviruses, and adenoviruses were quantified by culture for various ambient waters in the Milwaukee area. From August 1994 through July 2003, the influent and effluent of a local wastewater treatment plant (WWTP) were tested monthly by a modified U.S. Environmental Protection Agency Information Collection Rule (ICR) organic flocculation cell culture procedure for the detection of culturable viruses. Modification of the ICR procedure included using Caco-2, RD, and HEp-2 cells in addition to BGM cells. Lake Michigan source water for two local drinking water treatment plants (DWTPs) was also tested monthly for culturable viruses by passing 200 liters of source water through a filter and culturing a concentrate representing 100 liters of source water. Reoviruses, enteroviruses, and adenoviruses were detected frequently (105 of 107 samples) and, at times, in high concentration in WWTP influent but were detected less frequently (32 of 107 samples) in plant effluent and at much lower concentrations. Eighteen of 204 samples (8.8%) of source waters for the two DWTPs were positive for virus and exclusively positive for reoviruses at relatively low titers. Both enteroviruses and reoviruses were detected in WWTP influent, most frequently during the second half of the year.


2008 ◽  
Vol 8 (3) ◽  
pp. 297-304 ◽  
Author(s):  
A. W. C. van der Helm ◽  
L. C. Rietveld ◽  
Th. G. J. Bosklopper ◽  
J. W. N. M. Kappelhof ◽  
J. C. van Dijk

Optimization for operation of drinking water treatment plants should focus on water quality and not on environmental impact or costs. Using improvement of water quality as objective for optimization can lead to new views on operation, design and concept of drinking water treatment plants. This is illustrated for ozonation in combination with biological activated carbon (BAC) filtration at drinking water treatment plant Weesperkarspel of Waternet, the water cycle company for Amsterdam and surrounding areas. The water quality parameters that are taken into account are assimilable organic carbon (AOC), dissolved organic carbon (DOC) and pathogens. The operational parameters that are taken into account are the ozone dosage and the regeneration frequency of the BAC filters. It is concluded that ozone dosage and regeneration frequency should be reduced in combination with application of newly developed insights in design of ozone installations. It is also concluded that a new concept for Weesperkarspel with an additional ion exchange (IEX) step for natural organic matter (NOM) removal will contribute to the improvement of the disinfection capacity of ozonation and the biological stability of the produced drinking water.


2014 ◽  
Vol 14 (5) ◽  
pp. 850-856 ◽  
Author(s):  
K. Helmi ◽  
A. Watt ◽  
P. Jacob ◽  
I. Ben-Hadj-Salah ◽  
A. Henry ◽  
...  

A 4-month sampling campaign has been conducted for the monitoring of three drinking water treatment plants using flow cytometry and culture-based methods to provide information related to changes in bacterial concentration according to treatments. Flow cytometry is a fast and user-friendly technique enabling bacteria quantification and viability assessment in less than 1 hour. Specific profiles regarding log-reduction of total bacteria were obtained for each treatment plant. Chlorination appeared to be the most effective by causing metabolism inactivation and nucleic acid damages. Ozonation showed a significant impact on cell activity in contrast with ultraviolet treatment which strongly affected bacterial DNA. In addition, the results showed that active bacteria quantified by flow cytometry were significantly correlated with culturable bacteria. This alternative approach appeared as gainful compared to culture methods as it greatly facilitates the diagnosis of treatment plant process for drinking water production monitoring.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 628
Author(s):  
Keug Tae Kim ◽  
Yong-Gyun Park

Due to climate change, population growth, industrialization, urbanization, and water contamination, it is becoming more difficult to secure and supply clean and safe drinking water. One of the challenges many water utilities often face is the taste and odor (T&O) problem in drinking water treatment plants, mostly associated with geosmin and 2-MIB. These representative T&O compounds are mainly produced by the metabolism of blue-green algae (cyanobacteria), especially in summer. In this study, the correlation between algae blooms and T&O compounds was identified in the intake and raw water of a large-scale water treatment plant in the Republic of Korea. The removal efficiency of geosmin and 2-MIB by each treatment process was intensively evaluated. According to the obtained results, ozonation and granular activated carbon (GAC) adsorption were more effective for removing the troublesome compounds compared to other water treatment processes, such as coagulation/flocculation, filtration, and chlorination. Because of their seasonal concentration variation and different removal rates, optimal operation methods need to be developed and implemented for drinking water treatment plants to solve the T&O problems.


Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2512 ◽  
Author(s):  
Titus Cooray ◽  
Yuansong Wei ◽  
Junya Zhang ◽  
Libing Zheng ◽  
Hui Zhong ◽  
...  

Installation of decentralized water-treatment plants is an ideal option to supply safe drinking water for rural communities. Presently in Sri Lanka, over 3.6 million villagers face acute water-quality problems, and chronic kidney disease of unknown etiology (CKDu) is also prevalent among this community. Most of the drinking water in these villages is unpalatable due to high hardness and salinity. As an interim measure, reverse-osmosis (RO) water-treatment plants are introduced to provide safe water. However, due to deficient electrolytes, RO-treated water tastes unpleasant to some consumers; hence, people refuse it after prolonged use. The operation, maintenance, and management of RO plants are other major problems. Aimed at providing safe drinking water to the rural sector in a cost-effective manner, in this study, we fabricated an automated drinking-water purification system based on nanofiltration (NF) membrane technology, which can remove divalent cations, dissolved organic carbon (DOC) and pathogens efficiently, and monovalent ions partially, and thus keep electrolytes to some degree. Ten commercial NF membranes were tested in a laboratory, for solute and DOC removal efficiency and robustness. The DF-90 membrane showed the highest removal of DOC and hardness, and it was therefore selected, to design a pilot NF drinking-water treatment plant. The adhered DOC by the membrane can be cleaned by NaOH solution (pH = 12). The pilot NF drinking-water treatment plant has been in use since September 2018, and it shows excellent performance of removing DOC, TDS, hardness, fluoride, and pathogens in groundwater, and the permeate water of the NF plant has been well-accepted by the stakeholders of the society. The dominant genus of source water, and throughout the two processes (NF and RO), is Pseudomonas, and their difference is significant in the concentrates of the NF and RO processes.


2002 ◽  
Vol 2 (5-6) ◽  
pp. 193-199
Author(s):  
M.J. Yu ◽  
H.M. Cho ◽  
J.Y. Koo ◽  
I.S. Han ◽  
E.M. Gwon ◽  
...  

Recently, Seoul city has tried to modify and upgrade the existing facilities and utilities and to improve the established water treatment plants, instead of application of a new treatment process. These efforts have finally lowered the turbidity of finished water below 0.1NTU. Small lab-scale and pilot-scale experiments have been conducted and they have provided optimum parameters for the design and operation of drinking water treatment plants. In addition, quantitative and/or trace analysis technologies developed for monitoring water quality of effluent from unit processes and automization of facilities, have contributed to the improvement of turbidity in drinking water. The Kueui water treatment plant, one of the drinking water treatment plants in Seoul, produces finished water with 0.08 NTU. It results from the operators' continuous endeavor to lower the turbidity in a scale of 0.01 NTU. The data for 12 months indicated that turbidity of settled water was less than 1.16 NTU and that of filtered water was less than 0.12 NTU for 95% of the period. Sedimentation basins and sand filters satisfy the recommended turbidity criteria, 2 NTU and 0.3 NTU, respectively. Also Kueui water treatment plant has focused on the control of organic matters to decrease in DBPs and on the removal of microorganisms.


Sign in / Sign up

Export Citation Format

Share Document