The Potential of Free-Living Ground Water Bacteria to Degrade Aromatic Hydrocarbons and Heterocyclic Compounds

1988 ◽  
Vol 20 (3) ◽  
pp. 109-118 ◽  
Author(s):  
E. Arvin ◽  
B. Jensen ◽  
J. Aamand ◽  
C. Jørgensen

This study has documented that a considerable degradation potential related to aromatic hydrocarbons and aromatic nitrogen-, sulphur- and oxygen- containing compounds is associated with the free-living ground water bacteria. All studies were performed under aerobic conditions and with surplus of nitrogen and phosphorus. After a lag period, which differs considerably between locations upstream and downstream of hydrocarbon spills, the free-living bacteria are able to degrade the hydrocarbons to concentrations less than 1 µg/l. The bacteria from one site were able to degrade naphthalene according to a zero order reaction even at 1 µg/l. Preliminary experiments indicate that the free-living bacteria may have a relatively high activity compared to the attached bacteria when compared on the basis of the same total bacteria numbers. The hypothesis is put forward that, although the attached biomass concentration in the aquifer may be much higher than the free-living biomass, the latter is still very important for the degradation capability if the attached bacteria are fixed in the fine soil fractions (silt, etc), the reason being that the flow of water, and with this the flux of substrate, is relatively small to the attached bacteria due to low hydraulic conductivity in the fine soil fractions.

2014 ◽  
Vol 60 (11) ◽  
pp. 745-752 ◽  
Author(s):  
Tao Lin ◽  
Bo Cai ◽  
Wei Chen

In this study, we tested the potential of Limnoithona sinensis to provide its attached bacteria refuge against disinfection. The experimental results indicated that in water devoid of zooplankton, both UV radiation and chlorine disinfection significantly decreased the viability of free-living bacteria. In the presence of L. sinensis, however, the attached bacteria could survive and rapidly recover from disinfection. This demonstrated that L. sinensis provided protection from external damage to various aquatic bacteria that were attached to its body. The surviving bacteria remained on L. sinensis after disinfection exposure, which enabled a rapid increase in the bacterial population followed by their subsequent release into the surrounding water. Compared with UV radiation, chlorine disinfection was more effective in terms of inactivating attached bacteria. Both UV radiation and chlorine disinfection had little effect in terms of preventing the spread of undesirable bacteria, due to the incomplete inactivation of the bacteria associated with L. sinensis.


1983 ◽  
Vol 29 (5) ◽  
pp. 570-575 ◽  
Author(s):  
Kimio Fukami ◽  
Usio Simidu ◽  
Nobuo Taga

The relationship between the number of bacteria and the concentration of particulate organic carbon (POC) in seawater was investigated. In coastal seawater in summer, the POC concentration showed better correlation to the density of bacteria obtained by the viable plate count method (viable count, V.C.) than by the total direct count method (total count, T.C.). The number of attached bacteria (A) showed significant fluctuation, both laterally on a geographical scale and vertically in the water column; on the other hand, the number of free-living bacteria (F) was relatively constant. The POC concentration had a much higher correlation with A (r = 0.8795) than with T.C. (r = 0.7339), and had a low correlation with F (r = 0.6935). Moreover, a very good correlation was observed between the density of bacteria obtained by V.C. and A (r = 0.9153). These results indicate that when the concentration of particulate organic matter (POM) increases, some free-living bacteria become attached to POM, and grow on the surface of POM. These communities of attached bacteria have the ability to make colonies on plate media and can be counted as the "viable plate count."


2013 ◽  
Vol 68 (4) ◽  
pp. 940-947 ◽  
Author(s):  
Jinmei Wang ◽  
Min Liu ◽  
Huijie Xiao ◽  
Wei Wu ◽  
Meijuan Xie ◽  
...  

Microbial fouling is a serious problem in open recirculating cooling water systems. The bacterial communities that cause it have not been fully understood. In this study, we analyzed the community structure of free-living bacteria and particle-attached bacteria in cooling water, and bacteria in biofilm collected from the wall of the water reservoir in an industrial recirculating cooling water system by construction of a 16S rRNA gene clone library. Based on amplified ribosomal DNA restriction analysis, clones of all three libraries were clustered into 45 operational taxonomic units (OTUs). Thirteen OTUs displaying 91–96% sequence similarity to a type strain might be novel bacterial species. Noted differences in community structure were observed among the three libraries. The relative species richness of the free-living bacteria in cooling water was much lower than that of particle-attached bacteria and bacteria in biofilm. The majority of the free-living bacterial community (99.0%) was Betaproteobacteria. The predominant bacteria in the particle-attached bacterial community were Alphaproteobacteria (20.5%), Betaproteobacteria (27.8%) and Planctomycetes (42.0%), while those in the biofilm bacterial community were Alphaproteobacteria (47.9%), Betaproteobacteria (11.7%), Acidobacteria (13.1%) and Gemmatimonadetes (11.3%). To control microbial fouling in industrial recirculating cooling water systems, additional physiological and ecological studies of these species will be essential.


2021 ◽  
Vol 8 ◽  
Author(s):  
Zichao Deng ◽  
Shouchang Chen ◽  
Ping Zhang ◽  
Xu Zhang ◽  
Jonathan M. Adams ◽  
...  

In the context of global warming, changes in phytoplankton-associated bacterial communities have the potential to change biogeochemical cycling and food webs in marine ecosystems. Skeletonema is a cosmopolitan diatom genus in coastal waters worldwide. Here, we grew a Skeletonema strain with its native bacterial assemblage at different temperatures and examined cell concentrations of Skeletonema sp. and free-living bacteria, dissolved organic carbon (DOC) concentrations of cultures, and the community structure of both free-living and attached bacteria at different culture stages. The results showed that elevated temperature increased the specific growth rates of both Skeletonema and free-living bacteria. Different growth stages had a more pronounced effect on community structure compared with temperatures and different physical states of bacteria. The effects of temperature on the structure of the free-living bacterial community were more pronounced compared with diatom-attached bacteria. Carbon metabolism genes and those for some specific amino acid pathways were found to be positively correlated with elevated temperature, which may have profound implications on the oceanic carbon cycle and the marine microbial loop. Network analysis revealed evidence of enhanced cooperation with an increase in positive interactions among different bacteria at elevated temperature. This may help the whole community to overcome the stress of elevated temperature. We speculate that different bacterial species may build more integrated networks with a modified functional profile of the whole community to cope with elevated temperature. This study contributes to an improved understanding of the response of diatom-associated bacterial communities to elevated temperature.


1999 ◽  
Vol 65 (7) ◽  
pp. 3192-3204 ◽  
Author(s):  
Byron C. Crump ◽  
E. Virginia Armbrust ◽  
John A. Baross

ABSTRACT The Columbia River estuary is a dynamic system in which estuarine turbidity maxima trap and extend the residence time of particles and particle-attached bacteria over those of the water and free-living bacteria. Particle-attached bacteria dominate bacterial activity in the estuary and are an important part of the estuarine food web. PCR-amplified 16S rRNA genes from particle-attached and free-living bacteria in the Columbia River, its estuary, and the adjacent coastal ocean were cloned, and 239 partial sequences were determined. A wide diversity was observed at the species level within at least six different bacterial phyla, including most subphyla of the classProteobacteria. In the estuary, most particle-attached bacterial clones (75%) were related to members of the genusCytophaga or of the α, γ, or δ subclass of the classProteobacteria. These same clones, however, were rare in or absent from either the particle-attached or the free-living bacterial communities of the river and the coastal ocean. In contrast, about half (48%) of the free-living estuarine bacterial clones were similar to clones from the river or the coastal ocean. These free-living bacteria were related to groups of cosmopolitan freshwater bacteria (β-proteobacteria, gram-positive bacteria, andVerrucomicrobium spp.) and groups of marine organisms (gram-positive bacteria and α-proteobacteria [SAR11 andRhodobacter spp.]). These results suggest that rapidly growing particle-attached bacteria develop into a uniquely adapted estuarine community and that free-living estuarine bacteria are similar to members of the river and the coastal ocean microbial communities. The high degree of diversity in the estuary is the result of the mixing of bacterial communities from the river, estuary, and coastal ocean.


2021 ◽  
Vol 12 ◽  
Author(s):  
Anneke Heins ◽  
Greta Reintjes ◽  
Rudolf I. Amann ◽  
Jens Harder

Marine heterotrophic microorganisms remineralize about half of the annual primary production, with the microbiomes on and around algae and particles having a major contribution. These microbiomes specifically include free-living chemotactic and particle-attached bacteria, which are often difficult to analyze individually, as the standard method of size-selective filtration only gives access to particle-attached bacteria. In this study, we demonstrated that particle collection in Imhoff sedimentation cones enriches microbiomes that included free-living chemotactic bacteria and were distinct from particle microbiomes obtained by filtration or centrifugation. Coastal seawater was collected during North Sea phytoplankton spring blooms, and the microbiomes were investigated using 16S rRNA amplicon sequencing and fluorescence microscopy. Enrichment factors of individual operational taxonomic units (OTUs) were calculated for comparison of fractionated communities after separation with unfractionated seawater communities. Filtration resulted in a loss of cells and yielded particle fractions including bacterial aggregates, filaments, and large cells. Centrifugation had the lowest separation capacity. Particles with a sinking rate of >2.4 m day–1 were collected in sedimentation cones as a bottom fraction and enriched in free-living chemotactic bacteria, i.e., Sulfitobacter, Pseudoalteromonas, and Vibrio. Subfractions of these bottom fractions, obtained by centrifugation, showed enrichment of either free-living or particle-attached bacteria. We identified five distinct enrichment patterns across all separation techniques: mechano-sensitive and mechano-stable free-living bacteria and three groups of particle-attached bacteria. Simultaneous enrichment of particle-attached and chemotactic free-living bacteria in Imhoff sedimentation cones is a novel experimental access to these groups providing more insights into the diversity, structure, and function of particle-associated microbiomes, including members of the phycosphere.


2008 ◽  
Vol 5 (4) ◽  
pp. 1007-1022 ◽  
Author(s):  
M. Allgaier ◽  
U. Riebesell ◽  
M. Vogt ◽  
R. Thyrhaug ◽  
H.-P. Grossart

Abstract. The predicted rise in anthropogenic CO2 emissions will increase CO2 concentrations and decrease seawater pH in the upper ocean. Recent studies have revealed effects of pCO2 induced changes in seawater chemistry on a variety of marine life forms, in particular calcifying organisms. To test whether the predicted increase in pCO2 will directly or indirectly (via changes in phytoplankton dynamics) affect abundance, activities, and community composition of heterotrophic bacteria during phytoplankton bloom development, we have aerated mesocosms with CO2 to obtain triplicates with three different partial pressures of CO2 (pCO2): 350 μatm (1×CO2), 700 μatm (2×CO2) and 1050 μatm (3×CO2). The development of a phytoplankton bloom was initiated by the addition of nitrate and phosphate. In accordance to an elevated carbon to nitrogen drawdown at increasing pCO2, bacterial production (BPP) of free-living and attached bacteria as well as cell-specific BPP (csBPP) of attached bacteria were related to the C:N ratio of suspended matter. These relationships significantly differed among treatments. However, bacterial abundance and activities were not statistically different among treatments. Solely community structure of free-living bacteria changed with pCO2 whereas that of attached bacteria seemed to be independent of pCO2 but tightly coupled to phytoplankton bloom development. Our findings imply that changes in pCO2, although reflected by changes in community structure of free-living bacteria, do not directly affect bacterial activity. Furthermore, bacterial activity and dynamics of heterotrophic bacteria, especially of attached bacteria, were tightly correlated to phytoplankton development and, hence, may also potentially depend on changes in pCO2.


Sign in / Sign up

Export Citation Format

Share Document