Compliance Testing for Ocean Outfall Performance Utilising Natural Fluorescence of Effluent in Seawater Mixtures

1992 ◽  
Vol 25 (9) ◽  
pp. 41-48 ◽  
Author(s):  
R. B. Kaye ◽  
P. R. Haddad

Water samples were collected from public beaches at Sydney, Australia. The beaches were situated at various distances from the three major shoreline ocean outfalls discharging primary effluent. The samples were tested for faecal conform and faecal streptococci indicator bacteria. The same samples were also analysed for natural fluorescence. Excitation wavelength used was 280 nm and fluorescence emission from seawater effluent mixtures was observed at 445 nm. Indicator bacteria densities correlated well with fluorescence intensities for beach monitoring stations north of Sydney Harbour. Best correlations were observed for the stations situated within 5 kilometres from the outfall. Indicator bacteria densities were not as well correlated with fluorescence intensities for the stations south of Sydney Harbour. However, similar emission spectra were observed for all samples collected from stations both north and south of Sydney Harbour. Nevertheless, indicator bacteria densities for southern stations were observed to be better correlated with fluorescence intensities on particular days. The stations north of Sydney Harbour are believed to be impacted only by the one outfall at North Head. However the system south of Sydney Harbour is more complex. The southern stations are known to be impacted by any, or all of the three major outfalls at Bondi, Malabar, and North Head. Fluorescence can be used to determine effluent concentration in ocean waters where the origin of the effluent is known. There should also be opportunities for the development of fluorescence as an alternative indicator for “real time” public health monitoring of recreational waters.

2010 ◽  
Vol 9 (1) ◽  
pp. 16-24 ◽  
Author(s):  
Xupeng Hu ◽  
Rongguo Su ◽  
Fang Zhang ◽  
Xiulin Wang ◽  
Hongtao Wang ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1831
Author(s):  
Hsin Lee ◽  
Yen-Chang Su ◽  
Hsiang-Hao Tang ◽  
Yu-Sheng Lee ◽  
Jan-Yee Lee ◽  
...  

Nitrogen and sulfur codoped carbon dots (NSCDs) were synthesized via a one-pot hydrothermal method, and citric acid, ethylenediamine, and methyl blue were used as precursors. The obtained NSCDs were spherical with an average size of 1.86 nm. The fluorescence emission spectra of the NSCDs were excitation independent and emitted blue fluorescence at 440 nm with an excitation wavelength at 350 nm. The quantum yield of the NSCDs was calculated to be 68.0%. The NSCDs could be constructed as fluorescent probes for highly selective and sensitive sensing mercuric (Hg2+) and hypochlorite (ClO−) ions. As the addition of Hg2+ or ClO− ions to the NSCDs, the fluorescence intensity was effectively quenched due to dynamic quenching. Under the optimal conditions, the linear response of the fluorescence intensity ranged from 0.7 μM to 15 μM with a detection limit of 0.54 μM and from 0.3 μM to 5.0 μM with a limit of detection of 0.29 μM for Hg2+ and ClO− ions, respectively. Finally, the proposed method was successfully used for quantifying Hg2+ and ClO− ions in spiked tap water samples.


MRS Advances ◽  
2016 ◽  
Vol 1 (19) ◽  
pp. 1371-1376 ◽  
Author(s):  
George R. S. Andrade ◽  
Silvânio S. L. Costa ◽  
Cristiane C. Nascimento ◽  
Iara F. Gimenez

ABSTRACTIn this work, 3 simple, fast, labour and energy efficient methodologies were used to prepare carbon quantum dots (C-dots) using a red beetroot (Beta vulgaris subsp. vulgaris var. vulgaris) aqueous extract as the carbon source: alkali-assisted (AA), microwave-assisted (MA) and alkali-microwave-assisted (AMA) synthesis. TEM images shows nanoparticles with a nearly spherical morphology and diameters around 7.0 nm. FTIR spectra show characteristic peaks of C-H, C-O, O-H and C=C bonds for all the samples. The emission spectra show an interesting feature of the as-prepared samples: the emission band position can be tunable by changing the excitation wavelength. Comparing the 3 different methodologies in terms of photoluminescence properties, the one based only on the microwave-assisted heating has showed the most improved emission.


2015 ◽  
Vol 69 (2) ◽  
pp. 155-163 ◽  
Author(s):  
Violeta Rakic ◽  
Ajda Ota ◽  
Mihaela Skrt ◽  
Milena Miljkovic ◽  
Danijela Kostic ◽  
...  

The absorption and fluorescence emission spectra of cyanidin and cyanidin 3-O-?-glucopyranoside (Cy3Glc) at pH 5.5 in aqueous solution have been studied. The most effective fluorescence excitations of cyanidin were at the UV absorption maxima at 220 and at 230 nm and at higher wavelengths at 270 and at 280 nm. Cyanidin exhibits fluorescence emission maxima at 310 nm and in the visible range at 615 nm. For the Cy3Glc most effective fluorescence excitation was at 220 and at 230 nm and at higher wavelengths at 300 and at 310 nm. Cy3Glc has fluorescence emission spectra with the maximum at 380 nm and does not show fluorescence emission in the visible range. If compare fluorescence emission spectra of cyanidin and Cy3Glc it can be seen that fluorescence emission intensity for cyanidin is significantly higher than that for Cy3Glc. These results reveals the impact of 3-glucosidic substitution at C-3 of aglycone (to form Cy3Glc) on the significantly decrease in fluorescence emission intensity, and disappearance of the fluorescence emission in visible wavelength range.


2021 ◽  
Vol 11 (Suppl_1) ◽  
pp. S29-S29
Author(s):  
Olga Morozova ◽  
Nataliya Shevlyagina ◽  
Vladimir Zhukhovitsky

Background: Multiplex biomedical assays including molecular genetic tests and immunoanalysis require multiple fluorophores with a wide excitation range and different emission spectra. In comparison with organic fluorophores and quantum dots, the metal nanoclusters (NC) consisting of a few to hundred atoms have the following advantages: small size, large Stokes shift, prolonged fluorescence lifetime and biocompatibility. Our research was aimed at construction of fluorescent AgNC with the main blood proteins and transmission electron microscopy (TEM). Methods: AgNC were synthesized from AgNO3 in the presence of albumins and immunoglobulins (Ig) of different classes and origin at pH 9-11 with NaBH4 recovery. The resulting AgNC with proteins were loaded to "Formvar/Carbon 200 Mesh Copper" copper grids (Ted Pella, USA) and examined using TEM system JEM 2100 Plus (JEOL, Japan) without contrast. Fluorescence excitation/emission spectra were measured in quartz cuvette using the FluoroMax + spectrofluorometer (Horiba Scientific, Japan). Results: Recovery of Ag+ ions did not occur in the presence of IgG and albumins without NaBH4 at different temperatures, pH, and incubation time. Broad excitation spectra of AgNC were in a range 340-540 nm. Their emission spectra correlated with the original AgNO3 concentration and did not depend on protein and pH. NC stabilized with IgG or albumin with blue fluorescence and emission maximum at 420 nm contained NC from 0.6 nm and higher. Green AgNC with proteins had bright fluorescence at 430-470 nm and red NC showed emission maximum at 650 nm. TEM revealed discrete AgNC and their numerous aggregates in each sample of fluorescent NC in spite of different fluorescent emission spectra. According to the MTT test, AgNC with human IgG and BSA with protein concentrations up to 3 mg/ml were not toxic for human larynx carcinoma HEp-2 cells despite cytotoxicity of silver nanoparticles covered with IgG or albumin envelopes as well as Cd and AuNC with BSA. Conclusion: AgNC with antibodies and albumin with a broad size range and aggregation possess tunable fluorescence emission spectra with broad excitation at 340-540 nm. Different emission spectra permit AgNC to be used in multiplex assays. AgNC were not toxic for human tissue culture and may be applied for bioimaging.


1995 ◽  
Vol 49 (6) ◽  
pp. 754-764 ◽  
Author(s):  
Taggart D. Downare ◽  
Oliver C. Mullins

Fluorescence emission spectra and absolute quantum yields have been measured for ten diverse crude oils at various concentrations over a broad range of excitation and emission wavelengths in the visible and the near-infrared. Energy transfer produces large red shifts and large widths in the fluorescence emission spectra for shorter wavelength excitation particularly for heavier crude oils. However, the effects of energy transfer are nearly absent for near-infrared excitation; all crude oils exhibit nearly the same emission spectra for long wavelength excitation. In addition, the fraction of emission resulting from collisional energy transfer relative to nascent emission is almost independent of oil type; it is governed by quantum yield characteristics. Absolute fluorescence quantum yields of ten crude oils (and three rhodamine dyes for validation) were measured with respect to scattering of latex microspheres in distilled water. Fluorescence quantum yields vary systematically with crude oil type as well as excitation wavelength; quantum yields are lower for high fluorophore concentrations (heavy crude oils) and for longer wavelength excitation. Stern-Volmer analyses of the quantum yields indicate that simple models apply and show the relative quenching rates for different excitation wavelengths.


2014 ◽  
Vol 940 ◽  
pp. 11-15
Author(s):  
Jun Qin Feng ◽  
Jun Fang Chen

Zinc nitride films were deposited by ion sources-assisted magnetron sputtering with the use of Zn target (99.99% purity) on 7059 glass substrates. The films were characterized by XRD, SEM and EDS, the results of which show that the polycrystalline zinc nitride thin film can be grown on the glass substrates, the EDS spectrum confirmed the chemical composition of the films and the SEM images revealed that the zinc nitride thin films have a dense structure. Ultraviolet-visible-near infrared spectrophotometer was used to study the transmittance behaviors of zinc nitride thin films, which calculated the optical band gap by Davis Mott model. The results of the fluorescence emission spectra show the zinc nitride would be a direct band gap semiconductor material.


2021 ◽  
Vol 3 (7) ◽  
Author(s):  
Alex Saturday ◽  
Thomas J. Lyimo ◽  
John Machiwa ◽  
Siajali Pamba

AbstractBackground Microbial water quality serves to indicate health risks associated with the consumption of contaminated water. Nevertheless, little is known about the microbiological characteristics of water in Lake Bunyonyi. This study was therefore undertaken to examine the spatial and temporal variations of faecal indicator bacteria (FIB) in relation to physicochemical parameters in Lake Bunyonyi. Result The FIB concentration was consistently measured during sampling months and correlated with each other showing the presumed human faecal pollution in the lake. The highest concentration values for E. coli (64.7 ± 47.3 CFU/100 mL) and enterococci (24.6 ± 32.4 CFU/100 mL were obtained in the station close to the Mugyera trading centre. On a temporal basis, the maximum values were recorded during the rainy season in October 2019 (70.7 ± 56.5 CFU/100 mL for E. coli and 38.44 ± 31.8 CFU/100 mL for enterococci. FIB did not differ significantly among the study stations (p > 0.05) but showed significant temporal variations among the months (p < 0.05) with concentrations being significantly high in wet season than dry season (U = 794, p < 0.0001 for E. coli; U = 993.5, p = 0.008 for enterococci). Spearman’s rank correlation revealed that FIB concentrations were significantly positively correlated with turbidity and DO concentration levels (p < 0.05). Approximately 97.2% of the water samples had E. coli and enterococci concentrations levels below USEPA threshold for recreational waters. Likewise, 98.1 and 90.7% of samples recorded E. coli and enterococci counts exceeding the UNBS, APHA, WHO and EU threshold values for drinking water. Conclusion The FIB counts show that the Lake Bunyonyi water is bacteriologically unsuitable for drinking unless it is treated since the FIB pose health risks to consumers. Besides, the water can be used for recreational purposes.


Sign in / Sign up

Export Citation Format

Share Document