Synthesis of green-emitting carbon quantum dots with excitation wavelength dependent photoluminescence obtained from aqueous beetroot extract

MRS Advances ◽  
2016 ◽  
Vol 1 (19) ◽  
pp. 1371-1376 ◽  
Author(s):  
George R. S. Andrade ◽  
Silvânio S. L. Costa ◽  
Cristiane C. Nascimento ◽  
Iara F. Gimenez

ABSTRACTIn this work, 3 simple, fast, labour and energy efficient methodologies were used to prepare carbon quantum dots (C-dots) using a red beetroot (Beta vulgaris subsp. vulgaris var. vulgaris) aqueous extract as the carbon source: alkali-assisted (AA), microwave-assisted (MA) and alkali-microwave-assisted (AMA) synthesis. TEM images shows nanoparticles with a nearly spherical morphology and diameters around 7.0 nm. FTIR spectra show characteristic peaks of C-H, C-O, O-H and C=C bonds for all the samples. The emission spectra show an interesting feature of the as-prepared samples: the emission band position can be tunable by changing the excitation wavelength. Comparing the 3 different methodologies in terms of photoluminescence properties, the one based only on the microwave-assisted heating has showed the most improved emission.

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7604
Author(s):  
Hasan Shabbir ◽  
Tomasz Tokarski ◽  
Ditta Ungor ◽  
Marek Wojnicki

In this work, we report the synthesis method of carbon quantum dots (CDs) using the one-step method for fast and effective metal ion determination. Ascorbic acid was used as an inexpensive and environmentally friendly precursor. High-pressure and high-temperature reactors were used for this purpose. Microscopic characterization revealed the size of CDs was in the range of 2–6 nm and they had an ordered structure. The photoluminescence properties of the CDs depend on the process temperature, and we obtained the highest PL spectra for 6 h of hydrothermal reaction. The maximum emission spectra depend poorly on synthesis time. Further characterization shows that CDs are a good contender for sensing Fe3+ in aqueous systems and can detect concentrations up to 0.49 ppm. The emission spectra efficiency was enhanced by up to 200% with synthesis time.


RSC Advances ◽  
2017 ◽  
Vol 7 (27) ◽  
pp. 16637-16643 ◽  
Author(s):  
Yunyang Zhao ◽  
Songlin Zuo ◽  
Meng Miao

Fluorescent carbon quantum dots (CQDs) were synthesized using polyethylene glycol (PEG) as both the carbon source and solvent in various atmospheres including air, nitrogen, carbon dioxide and oxygen by following a microwave irradiation method.


2021 ◽  
Author(s):  
Lan Yuwei Lan ◽  
Yuwei Lan ◽  
Wenbin Bao ◽  
Chunfeng Liang ◽  
Guowei Li ◽  
...  

Abstract High-fluorescence Cu/N codoped carbon quantum dots (Cu/NCQDs) were prepared by a one-step hydrothermal method using frangipani as the carbon source and copper acetate as the copper source. The Cu/NCQDs exhibited high-intensity, stable blue fluorescence that is independent of the excitation wavelength. Since metronidazole can effectively quench the fluorescence intensity of Cu/NCQDs, a metronidazole fluorescence-detection method using Cu/NCQDs as the fluorescence probe was developed, and the quenching mechanism was studied.The method has the advantages of simplicity, speed, and low cost. Besides,it has a wider linear range and detection limit. Further, the metronidazole content in actual samples was determined by this method, with good results.


2021 ◽  
Vol 112 ◽  
pp. 110801
Author(s):  
Alif Syafiq Kamarol Zaman ◽  
Tong Ling Tan ◽  
Yamuna A/P Chowmasundaram ◽  
Norhanisah Jamaludin ◽  
Amir Reza Sadrolhosseini ◽  
...  

Talanta ◽  
2019 ◽  
Vol 196 ◽  
pp. 442-448 ◽  
Author(s):  
Yucan Che ◽  
Hongyu Pang ◽  
Huiyu Li ◽  
Lei Yang ◽  
Xinyao Fu ◽  
...  

2018 ◽  
Vol 42 (17) ◽  
pp. 14332-14339 ◽  
Author(s):  
Nan Zhou ◽  
Xingwei Zhang ◽  
Yanping Shi ◽  
Zeliang Li ◽  
Zhibiao Feng

Nitrogen-doped carbon quantum dots (CDs) were synthesized in ethanol media by using citric acid (CA) as the carbon source and ethanediamine (EDA) as the nitrogen source.


Polymers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 616 ◽  
Author(s):  
Xi Wang ◽  
Pei Yang ◽  
Qian Feng ◽  
Taotao Meng ◽  
Jing Wei ◽  
...  

Biomass-based carbon quantum dots (CQDs) have become a significant carbon materials by their virtues of being cost-effective, easy to fabricate and low in environmental impact. However, there are few reports regarding using cyanobacteria as a carbon source for the synthesis of fluorescent CQDs. In this study, the low-cost biomass of cyanobacteria was used as the sole carbon source to synthesize water-soluble CQDs by a simple hydrothermal method. The synthesized CQDs were mono-dispersed with an average diameter of 2.48 nm and exhibited excitation-dependent emission performance with a quantum yield of 9.24%. Furthermore, the cyanobacteria-derived CQDs had almost no photobleaching under long-time UV irradiation, and exhibited high photostability in the solutions with a wide range of pH and salinity. Since no chemical reagent was involved in the synthesis of CQDs, the as-prepared CQDs were confirmed to have low cytotoxicity for PC12 cells even at a high concentration. Additionally, the CQDs could be efficiently taken up by cells to illuminate the whole cell and create a clear distinction between cytoplasm and nucleus. The combined advantages of green synthesis, cost-effectiveness and low cytotoxicity make synthesized CQDs a significant carbon source and broaden the application of cyanobacteria and provide an economical route to fabricate CQDs on a large scale.


Sign in / Sign up

Export Citation Format

Share Document