Absence of Relationship between Health Effects Due to Tap Water Consumption and Drinking Water Quality Parameters

1993 ◽  
Vol 27 (3-4) ◽  
pp. 137-143 ◽  
Author(s):  
Pierre Payment ◽  
Eduardo Franco ◽  
Jack Siemiatycki

An 18-month prospective epidemiological study of gastrointestinal illnesses was conducted on 300 families consuming conventionally treated tap water and 300 consuming the same water after further treatment by reverse-osmosis. Drinking water met current bacteriological and physicochemical quality standards, but was found to be associated with a significant level of gastrointestinai illnesses: a reduction of 30% of the gastrointestinal illnesses was observed in the group consuming the filtered water. The presence or absence of total coliforms or fecal coliforms was not indicative of the health effects observed. The heterotrophic plate counts at 20°C in the distribution system were weakly associated with the duration of the symptoms when the data was analyzed by subregion. Several approaches to clustering of the family data to the nearest sampling site were attempted: no association could be demonstrated. Even if consumers of reverse-osmosis water experienced, on the average, less gastrointestinal illnesses, their illnesses were significantly associated with the number of bacteria growing at 35°C on medium R2A. The problems associated with the predictive value of the bacterial content of a water sample and in particular, the major differences between water quality at the tap and in the distribution system are presented. For example, standard procedures require analysis of the water after flushing the tap for several minutes: this is not however typical of the water that is consumed. Water that comes out of the tap has stagnated for long periods in household pipes and regrowth of bacterial contaminants can easily occur. The bacteria growing in this water might thus be responsible for some of the health effects observed in tap water.

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Glòria Carrasco-Turigas ◽  
Cristina M. Villanueva ◽  
Fernando Goñi ◽  
Panu Rantakokko ◽  
Mark J. Nieuwenhuijsen

Disinfection by-products (DBPs) are ubiquitous contaminants in tap drinking water with the potential to produce adverse health effects. Filtering and boiling tap water can lead to changes in the DBP concentrations and modify the exposure through ingestion. Changes in the concentration of 4 individual trihalomethanes (THM4) (chloroform (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and bromoform (TBM)), MX, and bromate were tested when boiling and filtering high bromine-containing tap water from Barcelona. For filtering, we used a pitcher-type filter and a household reverse osmosis filter; for boiling, an electric kettle, a saucepan, and a microwave were used. Samples were taken before and after each treatment to determine the change in the DBP concentration. pH, conductivity, and free/total chlorine were also measured. A large decrease of THM4 (from 48% to 97%) and MX concentrations was observed for all experiments. Bromine-containing trihalomethanes were mostly eliminated when filtering while chloroform when boiling. There was a large decrease in the concentration of bromate with reverse osmosis, but there was a little effect in the other experiments. These findings suggest that the exposure to THM4 and MX through ingestion is reduced when using these household appliances, while the decrease of bromate is device dependent. This needs to be considered in the exposure assessment of the epidemiological studies.


2018 ◽  
Vol 7 (2) ◽  
pp. 83
Author(s):  
Ruilian Li ◽  
Ming-qing Feng ◽  
Xiao-hui Bai

The pipelines corrosion can result discolor and particle increase in tap water and the complaints from the consumers. It also has the economic and hydraulic impacts for the replacement of broken pipes and fouling of corroded pipes. This paper aimed to investigate the effect of processed drinking water on metal pipe corrosion in water distribution system and the relations between the bulking water quality and pipe corrosion. It was found that there is a close relation between iron corrosion and water quality parameters in water distribution pipelines. It was shown that lower pH and alkalinity can increase the corrosion rate, while higher chlorides and sulfate may cause pitting corrosion. DOC in pipe water would be beneficial for microbial induced corrosion.


2021 ◽  
Vol 9 ◽  
Author(s):  
Chiqian Zhang ◽  
Jingrang Lu

Opportunistic pathogens (OPs) are natural inhabitants and the predominant disease causative biotic agents in municipal engineered water systems (EWSs). In EWSs, OPs occur at high frequencies and concentrations, cause drinking-water-related disease outbreaks, and are a major factor threatening public health. Therefore, the prevalence of OPs in EWSs represents microbial drinking water quality. Closely or routinely monitoring the dynamics of OPs in municipal EWSs is thus critical to ensuring drinking water quality and protecting public health. Monitoring the dynamics of conventional (fecal) indicators (e.g., total coliforms, fecal coliforms, and Escherichia coli) is the customary or even exclusive means of assessing microbial drinking water quality. However, those indicators infer only fecal contamination due to treatment (e.g., disinfection within water utilities) failure and EWS infrastructure issues (e.g., water main breaks and infiltration), whereas OPs are not contaminants in drinking water. In addition, those indicators appear in EWSs at low concentrations (often absent in well-maintained EWSs) and are uncorrelated with OPs. For instance, conventional indicators decay, while OPs regrow with increasing hydraulic residence time. As a result, conventional indicators are poor indicators of OPs (the major aspect of microbial drinking water quality) in EWSs. An additional or supplementary indicator that can well infer the prevalence of OPs in EWSs is highly needed. This systematic review argues that Legionella as a dominant OP-containing genus and natural inhabitant in EWSs is a promising candidate for such a supplementary indicator. Through comprehensively comparing the behavior (i.e., occurrence, growth and regrowth, spatiotemporal variations in concentrations, resistance to disinfectant residuals, and responses to physicochemical water quality parameters) of major OPs (e.g., Legionella especially L. pneumophila, Mycobacterium, and Pseudomonas especially P. aeruginosa), this review proves that Legionella is a promising supplementary indicator for the prevalence of OPs in EWSs while other OPs lack this indication feature. Legionella as a dominant natural inhabitant in EWSs occurs frequently, has a high concentration, and correlates with more microbial and physicochemical water quality parameters than other common OPs. Legionella and OPs in EWSs share multiple key features such as high disinfectant resistance, biofilm formation, proliferation within amoebae, and significant spatiotemporal variations in concentrations. Therefore, the presence and concentration of Legionella well indicate the presence and concentrations of OPs (especially L. pneumophila) and microbial drinking water quality in EWSs. In addition, Legionella concentration indicates the efficacies of disinfectant residuals in EWSs. Furthermore, with the development of modern Legionella quantification methods (especially quantitative polymerase chain reactions), monitoring Legionella in ESWs is becoming easier, more affordable, and less labor-intensive. Those features make Legionella a proper supplementary indicator for microbial drinking water quality (especially the prevalence of OPs) in EWSs. Water authorities may use Legionella and conventional indicators in combination to more comprehensively assess microbial drinking water quality in municipal EWSs. Future work should further explore the indication role of Legionella in EWSs and propose drinking water Legionella concentration limits that indicate serious public health effects and require enhanced treatment (e.g., booster disinfection).


2015 ◽  
Vol 14 (3) ◽  
pp. 471-488 ◽  
Author(s):  
Simge Varol ◽  
Aysen Davraz

Isparta city center is selected as a work area in this study because the public believes that the tap water is dirty and harmful. In this study, the city's drinking water in the distribution system and other spring waters which are used as drinking water in this region were investigated from the point of water quality and health risk assessment. Water samples were collected from major drinking water springs, tap waters, treatment plants and dam pond in the Isparta province center. Ca-Mg-HCO3, Mg-Ca-HCO3, Ca-Na-HCO3, Ca-HCO3, Ca-HCO3-SO4 and Ca-Mg-HCO3-SO4 are dominant water types. When compared to drinking water guidelines established by World Health Organization and Turkey, much greater attention should be paid to As, Br, Fe, F, NH4, PO4 through varied chemicals above the critical values. The increases of As, Fe, F, NH4 and PO4 are related to water–rock interaction. In tap waters, the increases of As and Fe are due to corrosion of pipes in drinking water distribution systems. The major toxic and carcinogenic chemicals within drinking water are As and Br for both tap water and spring water. Also, F is the non-carcinogenic chemical for only spring waters in the study area.


Author(s):  
Gezahegn Faye ◽  
Israel Sebsibe ◽  
Birhanu Degaga ◽  
Tsige Tekle

Abstract The problem of drinking water quality is common in developing countries. While a piped water supply is available in many parts of Fiche, Ethiopia, the water may be contaminated in the distribution system and thus, continuous quality assessment is required to ensure safe drinking water for the community. Instrumental and spectrophotometric methods were used to analyze the chemical characteristics including dissolved oxygen, pH, temperature, chloride, fluoride, nitrate, nitrite, sulfate, ammonia, iron and manganese. The weighted arithmetic water quality index method was applied to assess the water's quality rating. The chemical characteristics of the tap water's annual range was; temperature between 19.4 and 20.0°C, pH between 6.8 and 7.6, DO between 4.5 and 6.1 mg/L, ammonia between 0.01 and 0.2 mg-NH3/L, nitrate between 1.1 and 1.8 mg-NO3/L, nitrite between 0.003 and 0.06 mg-NO2/L, 2.0 and 19.1 mg-SO42−/L, chloride between 10.07 and 30.0 mg-Cl−/L, manganese between 0.003 and 0.003 mg-Mn/L, iron between 0.01 and 0.03 mg-Fe/L. The WQIs for the reservoir and tap water were 25.031 and 40.676, respectively, so the tap water is rated ‘good’ for drinking.


2010 ◽  
Vol 10 (3) ◽  
pp. 472-485 ◽  
Author(s):  
F. Proulx ◽  
M. J. Rodriguez ◽  
J. B. Sérodes ◽  
L. F. Miranda

Despite more stringent regulations concerning drinking water quality in many countries, the public is increasingly concerned about the safety of municipal tap water. For this reason, acquiring a better understanding of consumer perception of tap water is an important issue for water authorities and utility managers. In this study, water consumption choice and profile were investigated. The case under study is the territory of a water supply system in Québec City (Canada). Data on drinking water consumption was obtained through a questionnaire-based survey. Survey results showed that an important proportion (about one third) of the population under study do not drink tap water. To explain consumption choice (tap water or not) and consumption profile (levels of tap water consumption), binary and ordinal logistic regression analyses (LGA) were performed based on survey responses and complementary data resulting from measurements of water quality parameters in 32 locations throughout the water distribution system. Water quality information was managed through a water quality index (WQI). The WQI of each sampling point was associated with the location of each survey respondent using a geographical information system (GIS). LGA results showed that the geographical location of the consumer within the distribution system, the WQI and perceived risk toward water consumption were the main factors explaining both the water consumption choice and tap water consumption profile.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Gonfa Duressa ◽  
Fassil Assefa ◽  
Mulissa Jida

In Ethiopia, access to improved water supply and sanitation has been very low and hence majority of the communicable diseases are associated with unsafe and inadequate water supply. Thus, the aim of this study was to assess physicochemical and bacteriological characteristics of water from sources to household connection in Nekemte town. A cross-sectional study was conducted from November 2015 to March 2016. Water samples were collected in triplicates from selected 30 sampling points from source, disinfection point, main distribution system tank, and household taps. All samples were analysed for bacteriological, chemical, and physical quality parameters using standard procedures. The results showed that temperature, pH, turbidity, total dissolved substances, and electrical conductivity of the water samples were varied between 16.9 and 22°C, 6.8–7.0, nil-12 NTU, 50–70 mg/l, and 40–46 µS/cm, respectively. Phosphate and nitrate concentrations of the water samples also ranged between 0.65 and 1 mg/l and 2.2–6.5 mg/l, respectively. Free residual chlorine concentration in the majority of the water samples was less than 0.5 mg/l. All samples were positive for total coliform with counts ranging from 12 to 120 CFU/100 ml, whereas faecal coliforms were detected in only 37% of tap water samples. In general, the majority of the tested parameters were within the permissible range of both the WHO and Ethiopian drinking water standards. However, Fe, Mn, faecal coliforms, total coliforms, and temperature did not conform to both WHO and Ethiopian drinking water standards. Based on the results, we can conclude that water quality deterioration was both at the sources and in the supply networks. Hence, proper drainage, sewage disposal systems, and sufficient disinfection of water with chlorine are of prime importance to deliver safe drinking water to the residents of Nekemte town.


2020 ◽  
Vol 10 (2) ◽  
pp. 179-190
Author(s):  
Pardon Dandadzi ◽  
Zvikomborero Hoko ◽  
Tamuka Nhiwatiwa

Abstract This study assessed the quality of drinking water in the water supply system for the City of Harare (Zimbabwe) by investigating the occurrence of algae and other water quality parameters that affect its growth. At Morton Jaffray Water Treatment Works (MJWTWs), samples were collected from the raw water inlet and treated water outlet points. In the distribution system, samples were collected from selected sites and grouped into four zones (1, 2, 3 and 4). The algal taxonomic groups that were found in both raw and treated water comprised of Cyanophyceae, Chlorophyceae, Bacillariophyceae, Euglenophyceae and Dinophyceae. It was found out that Microcystis aeruginosa followed by Anabaena were the most abundant species in both raw water and in the distribution system. All measured water quality parameters were within the Standards Association of Zimbabwe and WHO guideline values except for chlorine which had an average residual chlorine concentration that was lower than the WHO recommended lower value of 0.2 mg/L in parts of Zone 2. Morton Jaffray Water Treatment Works does not completely remove algae, and there is a carry-over of algae into the distribution system. Boosting of chlorine is recommended for Zone 2 that had residual chlorine less than the WHO minimum threshold of 0.2 mg/L.


Sign in / Sign up

Export Citation Format

Share Document