Effect of chlorinated alkenes on the reductive dechlorination and methane production processes

1994 ◽  
Vol 30 (7) ◽  
pp. 85-94 ◽  
Author(s):  
Ping Zhuang ◽  
Spyros G. Pavlostathis

Mixed, acetate-fed methanogenic cultures were used to assess the effect of increasing tetrachloroethylene (PCE), trichloroethylene (TCE) and cis-1,2-dichloroethylene (cDCE) concentrations on the reductive dechlorination and primary metabolism (methane production) processes. In addition, the effect of TCE on the rate and extent of the reductive dechlorination of PCE was investigated. All cultures were developed in serum bottles and incubation was carried out at 35°C in the dark. Soil samples from two sites contaminated with chlorinated solvents served as the inoculum for this study. All chlorinated alkenes used were supplied as saturated solutions in the culture media. The rate of PCE dechlorination increased with increasing PCE concentrations. Both TCE and cDCE showed an increase in the dechlorination rate up to a solvent threshold concentration followed by a decrease. In all cases, the methane production rate decreased as the chlorinated alkene concentrations increased. However, the effect of chlorinated alkenes was more pronounced on methane production rather than on the extent of dechlorination. The relative toxicity of the chlorinated alkenes tested in this study formed the following ascending series: PCE < TCE < < cDCE.

Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1949
Author(s):  
Edoardo Masut ◽  
Alessandro Battaglia ◽  
Luca Ferioli ◽  
Anna Legnani ◽  
Carolina Cruz Viggi ◽  
...  

In this study, wood mulch-based amendments were tested in a bench-scale microcosm experiment in order to assess the treatability of saturated soils and groundwater from an industrial site contaminated by chlorinated ethenes. Wood mulch was tested alone as the only electron donor in order to assess its potential for stimulating the biological reductive dechlorination. It was also tested in combination with millimetric iron filings in order to assess the ability of the additive to accelerate/improve the bioremediation process. The efficacy of the selected amendments was compared with that of unamended control microcosms. The results demonstrated that wood mulch is an effective natural and low-cost electron donor to stimulate the complete reductive dechlorination of chlorinated solvents to ethene. Being a side-product of the wood industry, mulch can be used in environmental remediation, an approach which perfectly fits the principles of circular economy and addresses the compelling needs of a sustainable and low environmental impact remediation. The efficacy of mulch was further improved by the co-presence of iron filings, which accelerated the conversion of vinyl chloride into the ethene by increasing the H2 availability rather than by catalyzing the direct abiotic dechlorination of contaminants. Chemical analyses were corroborated by biomolecular assays, which confirmed the stimulatory effect of the selected amendments on the abundance of Dehalococcoides mccartyi and related reductive dehalogenase genes. Overall, this paper further highlights the application potential and environmental sustainability of wood mulch-based amendments as low-cost electron donors for the biological treatment of chlorinated ethenes.


1997 ◽  
Vol 35 (8) ◽  
pp. 209-215 ◽  
Author(s):  
Shuzo Tanaka ◽  
Toshio Kobayashi ◽  
Ken-ichi Kamiyama ◽  
Ma. Lolita N. Signey Bildan

Effects of pretreatment on the anaerobic digestion of waste activated sludge (WAS) were investigated in terms of VSS solubilization and methane production by batch experiments. The methods of pretreatment studied are NaOH addition (chemical), heating (thermal) and heating with NaOH addition (thermochemical) to the domestic WAS and to the combined WAS from domestic, commercial and industrial wastewaters. The thermochemical pretreatment gave the best result among three methods in the combined WAS, i.e., the VSS was solubilized by 40-50% and the methane production increased by more than 200% over the control when the WAS was heated at 130°C for 5 minutes with the dose 0.3 g NaOH/g VSS. In the domestic WAS, the VSS solubilization rate was 70-80% but the increase of the methane production was about 30% after thermochemically pretreated. The domestic WAS consists of 41% protein, 25% lipid and 14% carbohydrate on COD basis, and the solubilization rate of protein, which is the largest constituent of the WAS, was 63% in the thermochemical pretreatment. Although the effect of the thermochemical pretreatment on the methane production was higher to the combined WAS than to the domestic WAS, the methane production rate was 21.9 ml CH4/g VSSWAS·day in the domestic WAS and 12.8 ml CH4/g VSSWAS·day in the combined WAS.


2000 ◽  
Vol 42 (10-11) ◽  
pp. 247-255 ◽  
Author(s):  
J. Paing ◽  
B. Picot ◽  
J. P. Sambuco ◽  
A. Rambaud

Sludge accumulation and the characteristics of anaerobic digestion in sludge had been investigated in a primary anaerobic lagoon. Methanogenic potential of sludge was evaluated by an anaerobic digestion test which measured the methane production rate. Sludge was sampled at several points in the lagoon to determine spatial variations and with a monthly frequency from the start-up of the lagoon to observe the development of anaerobic degradation. Maximum amounts of sludge accumulated near the inlet. The mean methane production of sludge was 2.9 ml gVS–1 d–1. Sludge near the outlet presented a greater methanogenic activity and a lesser concentration of volatile fatty acids than near the inlet. The different stages of anaerobic degradation were spatially separated, acidogenesis near the inlet and methanogenesis near the outlet. This staged distribution seemed to increase efficiency of anaerobic fermentation compared with septic tanks. Methane release at the surface of the lagoon was estimated to be very heterogeneous with a mean of 25 l m–2 d–1. The development of performance and sludge characteristics showed the rapid beginning of methanogenesis, three months after the start-up of the anaerobic lagoon. Considering the volume of accumulated sludge, it could however be expected that methanogenic activity would further increase.


1999 ◽  
Vol 65 (12) ◽  
pp. 5493-5499 ◽  
Author(s):  
Douglas O. Mountfort ◽  
Heinrich F. Kaspar ◽  
Malcolm Downes ◽  
Rodney A. Asher

ABSTRACT A study of anaerobic sediments below cyanobacterial mats of a low-salinity meltwater pond called Orange Pond on the McMurdo Ice Shelf at temperatures simulating those in the summer season (<5°C) revealed that both sulfate reduction and methane production were important terminal anaerobic processes. Addition of [2-14C]acetate to sediment samples resulted in the passage of label mainly to CO2. Acetate addition (0 to 27 mM) had little effect on methanogenesis (a 1.1-fold increase), and while the rate of acetate dissimilation was greater than the rate of methane production (6.4 nmol cm−3 h−1compared to 2.5 to 6 nmol cm−3 h−1), the portion of methane production attributed to acetate cleavage was <2%. Substantial increases in the methane production rate were observed with H2 (2.4-fold), and H2 uptake was totally accounted for by methane production under physiological conditions. Formate also stimulated methane production (twofold), presumably through H2 release mediated through hydrogen lyase. Addition of sulfate up to 50-fold the natural levels in the sediment (interstitial concentration, ∼0.3 mM) did not substantially inhibit methanogenesis, but the process was inhibited by 50-fold chloride (36 mM). No net rate of methane oxidation was observed when sediments were incubated anaerobically, and denitrification rates were substantially lower than rates for sulfate reduction and methanogenesis. The results indicate that carbon flow from acetate is coupled mainly to sulfate reduction and that methane is largely generated from H2 and CO2 where chloride, but not sulfate, has a modulating role. Rates of methanogenesis at in situ temperatures were four- to fivefold less than maximal rates found at 20°C.


2006 ◽  
Vol 65 (3) ◽  
pp. 411-424 ◽  
Author(s):  
Antónia Balážová ◽  
Marián Slodička ◽  
Roger Van Keer

Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 860 ◽  
Author(s):  
Helen Coarita Fernandez ◽  
Diana Amaya Ramirez ◽  
Ruben Teixeira Franco ◽  
Pierre Buffière ◽  
Rémy Bayard

Different methods were tested to evaluate the performance of a pretreatment before anaerobic digestion. Besides conventional biochemical parameters, such as the biochemical methane potential (BMP), the methane production rate, or the extent of solubilization of organic compounds, methods for physical characterization were also developed in the present work. Criteria, such as the particle size distribution, the water retention capacity, and the rheological properties, were thus measured. These methods were tested on samples taken in two full-scale digesters operating with cattle manure as a substrate and using hammer mills. The comparison of samples taken before and after the pretreatment unit showed no significant improvement in the methane potential. However, the methane production rate increased by 15% and 26% for the two hammer mills, respectively. A relevant improvement of the rheological properties was also observed. This feature is likely correlated with the average reduction in particle size during the pretreatment operation, but these results needs confirmation in a wider range of systems.


Sign in / Sign up

Export Citation Format

Share Document