Joint Treatment of Industrial Effluent: Case Study of Limassol Industrial Estate

1994 ◽  
Vol 29 (9) ◽  
pp. 99-104 ◽  
Author(s):  
I. Hadjivassilis ◽  
L. Tebai ◽  
M. Nicolaou

The treatment plant has been designed and installed for the treatment of wastewater discharged from various industries at Limassol Industrial Estate. The total daily flow and biological load after the last extension of the plant are 1000-1200m3/d and 220-264kg BOD5/d respectively. Chemical treatment followed by biological treatment is applied. The main steps of the treatment process are as follows: equalization, flotation, coagulation-flocculation, settlement of chemical sludge, pH-adjustment, nutrient addition, aeration of activated sludge, settlement of biological sludge, chlorination and sludge stabilization. The efficiency of the plant with respect to BOD5 and COD removal is over 90%. The quality of the treated effluent is BOD5 < 15mg/l and COD < 40mg/l. The concentration of trace elements are below the recommended limits for reclaimed water used for irrigation purposes.

Author(s):  
Dhanraj M R ◽  
◽  
Ganesha A ◽  

The aim of this study is to evaluate the quality of sewage generated from 7000 KLD Sewage Treatment Plant (STP) located at Manipal Institute of Technology, Manipal Karnataka which is based on the Activated Sludge Technology. The study of sewage quality of this plant is essential as most of the treated effluent discharged into a stream during monsoon and remaining season used for a Gardening purpose. Water samples were collected from the outlet and analyzed for the major waste-water quality parameters, such as pH, Biochemical Oxygen Demand (BOD) and residual chlorine. The overall quality of sewage of 7000 KLD Sewage treatment plants will be evaluated by collecting samples. The results of these evaluations also determine whether the effluent discharged into the water body is under limits given by Karnataka state pollution control board (KSPCB) & BIS standards.


2021 ◽  
pp. 107-117
Author(s):  
Supriya Singh ◽  
Manoj K. Tiwari

Industrial effluent Management is one of the major environmental concerns, especially in developing countries under rapid industrialization. The grossly polluting industries recognized by Central Pollution Control Board (CPCB), such as Pulp and Paper Industries, poses even bigger environmental threats, owing to quantity and quality of effluent generated. This paper aimed at analyzing effluent management practices in pulp and paper industries in India, and asses the performance variability of a paper mill effluent treatment plant (ETP), as a Case Study. Majority of pulp and paper industries found to still employ conventional methods of effluent treatment. Although, most of the parameters of treated effluent are commonly reported within CPCB’s permissible discharge limits, the treatment is usually cost and energy intensive, and produce high amount of solid residuals as sludge. For the case study paper mill ETP, the treatment efficiencies of the ETP units were analyzed under variable inlet pH, TSS, TDS, BOD and COD loads. The pH variations in the range of 6.5 to 9 had little effect of COD or TSS removal, however removal efficiencies were higher for larger inlet COD or TSS loads. The results of the study could be helpful in optimizing operation of the existing ETPs, as well as, guiding on upgrading ETPs with more cost-effective and efficient units.


2011 ◽  
Author(s):  
Janet M. Blatny ◽  
Jaran S. Olsen ◽  
Øyvind Andreassen ◽  
Viggo Waagen ◽  
Bjørn Anders P. Reif

1992 ◽  
Vol 25 (1) ◽  
pp. 45-51 ◽  
Author(s):  
Larbi Tebai ◽  
Ioannis Hadjivassilis

Soft drinks industry wastewater from various production lines is discharged into the Industrial Effluent Treatment Plant. The traditional coagulation/flocculation method as first step, followed by biological treatment as second step, has been adopted for treating the soft drinks industry wastewaters. The performance of the plant has been evaluated. It has been found that the effluent characteristics are in most cases in correspondence with the requested standards for discharging the effluent into the Nicosia central sewerage system.


1992 ◽  
Vol 25 (10) ◽  
pp. 55-67 ◽  
Author(s):  
R. C. Squires

The performance of Exxflow, a patented form of crossflow microfiltration, treating industrial wastewaters containing mixed heavy metals discharged by two types of industry is quantified and compared with the traditional technologies used for such treatment. Pilot trial results using Exxflow are shown and compared to the performance of the full scale plants now operating on these effluents. The operating costs of the Exxflow process are estimated for the two plants. One of which has been operating for 18 months and the other about 4 months. The Exxflow process is described and improvements which are being developed to lower the operating costs are presented. It is shown that industrial effluents containing mixed heavy metals are very effectively treated by the Exxflow process and since the installation of the plants the treated effluent has been of a quality suitable for discharge to the River Thames in one case and to a sewage treatment plant in the other. Unlike other processes, Exxflow has shown that it can successfully treat effluent containing mixed metals and that removal of antimony from mixed metal waste waters is affected by the concentration of sodium sulphate in the wastewater.


2016 ◽  
Vol 74 (4) ◽  
pp. 816-823 ◽  
Author(s):  
R. Nogueira ◽  
K.-U. Utecht ◽  
M. Exner ◽  
W. Verstraete ◽  
K.-H. Rosenwinkel

A community-wide outbreak of Legionnaire's disease occurred in Warstein, Germany, in August 2013. The epidemic strain, Legionella pneumophila Serogruppe 1, was isolated from an industrial wastewater stream entering the municipal wastewater treatment plant (WWTP) in Wartein, the WWTP itself, the river Wäster and air/water samples from an industrial cooling system 3 km downstream of the WWTP. The present study investigated the effect of physical–chemical disinfection methods on the reduction of the concentration of Legionella in the biological treatment and in the treated effluent entering the river Wäster. Additionally, to gain insight into the factors that promote the growth of Legionella in biological systems, growth experiments were made with different substrates and temperatures. The dosage rates of silver micro-particles, hydrogen peroxide, chlorine dioxide and ozone and pH stress to the activated sludge were not able to decrease the number of culturable Legionella spp. in the effluent. Nevertheless, the UV treatment of secondary treated effluent reduced Legionella spp. on average by 1.6–3.4 log units. Laboratory-scale experiments and full-scale measurements suggested that the aerobic treatment of warm wastewater (30–35 °C) rich in organic nitrogen (protein) is a possible source of Legionella infection.


2012 ◽  
Vol 518-523 ◽  
pp. 1867-1872
Author(s):  
Kai Tang Hu ◽  
Ming Li

A general three stages process to treat the integrated waste water in a laboratory scale, including anaerobic, aerobic and intensive coagulating treatment, was discussed in this paper. After being filtrated and coagulation simply, the effluent was treated with two steps of biological process combined with one step of intensive coagulation process. The result shows that the chemical impurities, including COD, BOD, colored substances and turbidity were removed efficiently,and after anaerobic biological treatment, effluent become easy to be biologically treated, and after aerobic aeration treatment, the BOD of the effluent from the clarifier was lower than 25 mg/l,and the BOD total removal ratio was as high as 90%. The result shows also that when poly aluminum silicate chloride (PASC) combing with APAM was effective to remove the colored substances more than 95%. Being treated for the three stages, the water quality of the treated effluent was higher than that discharge requirements by National Effluent Discharge Standards in China.


2019 ◽  
pp. 377-387
Author(s):  
Steve Last ◽  
Jonty Olufsen ◽  
Howard Robinson

Demand for of on-site treatment schemes that are capable of treating landfill leachates to highstandards has grown substantially during the last two decades. Increasingly, plants are beingrequired to discharge high quality effluents directly into surface watercourses, or to provide ahigh degree of treatment prior to discharge into the public sewerage system. This trend is certainto continue - primarily driven in the United Kingdom in recent months by the requirements of theEU IPPC Directive, which demands the application of Best Available Techniques (BAT), and bythe EU Water Framework Directive.Aerobic biological treatment of leachate from domestic landfills has widely been shown to be themost appropriate, reliable and successful treatment technique to consistently meet stringentdischarge constraints with minimal operator input. The cost of this technology is also oftenfavourable, when compared with alternative processes. More than 50 plants of this type arecurrently operational in the United Kingdom, making it by far the most widely adopted on-sitetreatment technology, and many other examples exist overseas.This paper provides a detailed case study of the design, construction and commissioning of abiological, Sequencing Batch Reactor (SBR) leachate treatment plant for Hampshire CountyCouncil, at Efford Landfill Site in the New Forest in Hampshire, UK.Since plant commissioning was completed by the authors during early 2003, extensive anddetailed monitoring data have been collected. These are presented for the plant, which is capable 3 of treating up to 150 m /day of strong methanogenic leachate (ammoniacal-N from 600-1 000mg/1), and are compared with treatment performances achieved at other full-scale leachatetreatment plants. The paper shows 80D5 and ammoniacal-N removal efficiencies in excess of99%.Results also show the efficiency of polishing treatment in a reed bed, before discharge of finaleffluent to public sewer.


Author(s):  
L.A. Fesik ◽  
◽  
N.V. Sorokina ◽  
E.А. Geraskina ◽  
T.S. Airapetian ◽  
...  

Abstract. The urgency of the problem of local biological treatment of domestic wastewater from housing in non-canalized areas with improving the quality of treated wastewater to the level of requirements for discharge into fishery bodies of water is considered. The analysis of the state of local wastewater treatment is given. Existing technological schemes and methods of local sewage, which are used for sewage treatment, are considered. The results of theoretical and experimental studies of a complex of a local anaerobic-aerobic biological treatment of domestic wastewater from housing in non-canalized areas at the low-productivity plants are presented. The results of theoretical and experimental researches of complex of local anaerobic-aerobic biological purification of domestic wastewater of habitation in non-canalized areas at the low-productivity plants are given. On the basis of the analysis of work and embodiment of low-productivity plants, used in home and foreign practice of local treatment of domestic wastewater the expediency of application flowing multistage anaerobic-aerobic biological purification of domestic wastewater with use of communities of attached and free-swimming microorganisms is shown. The proposed low-productivity plant, which includes a three-stage aerobic biological treatment of anaerobically treated wastewater is described. The use of ruff fillers for the retention of hydrobionts gives the opportunity to clear salvo discharge, rapid restoration of the activity of the ruff fillers (for example, in power outages). The ruff fillers make it possible to organize an appropriate trophic chain of hydrobionts, which dramatically reduces the amount of excess biomass and the removal of suspensions in treated wastewater. Using the experiments in laboratory conditions and at real industrial treatment plant of a new design there were received parameters of work of stages of anaerobic and aerobic biological purification, the law of nitrification and denitrification processes, the law of specific speed of oxidation of organic pollution in specific conditions of anaerobic-aerobic technology; the opportunity of reception of quality of treated wastewater at the level of the requirements of the specifications for dump of drains in fishing reservoirs is proved.


Sign in / Sign up

Export Citation Format

Share Document