Treatment of slaughterhouse wastewater

1995 ◽  
Vol 32 (12) ◽  
pp. 99-104 ◽  
Author(s):  
J. Martínez ◽  
L. Borzacconi ◽  
M. Mallo ◽  
M. Galisteo ◽  
M. Viñas

In this paper an evaluation of the effluent treatment plant of a slaughterhouse which processes 650 head of cattle a day is presented. Some problems in the operation of the anaerobic reactor and anaerobic lagoons caused by the presence of fats and suspended solids in the effluent were detected. A flotation system by pressurized air injection was tested at the plant. The fat removal efficiency obtained was 63% and 37% for red water and green water, respectively. In order to improve the hydrolysis of particulate matter, a system of two UASB reactors with recirculation, connected in series, was tested at laboratory scale. Removal efficiency was 77% for soluble COD and 82% for insoluble COD, at a volumetric load of 1.8 kgCOD/m3/d. Based on the results of these studies, several modifications in the treatment plant were proposed.

Author(s):  
Md. Najmul Hasan ◽  
Samsul Islam ◽  
Mohammad Zoynal Abedin

The present study was undertaken to evaluate the performance efficiency of an Effluent Treatment Plant (ETP) of a Textile industry located at Tongi, Bangladesh with biological treatment (BT) and Membrane Bio-Reactor (MBR) with an average inflow of 300 m3/hr. The effluent samples were collected from the inlet and outlet of the ETP on a weekly basis for a 4 weeks’ period and were analysed for key parameters such as colour, temperature, total suspended solids (TSS), Total Dissolved Solids (TDS), pH, Dissolved Oxygen (DO), Biological Oxygen Demand (BOD), and Chemical Oxygen Demand (COD). In this study, it was observed that the colour of the effluent in the inlet was dark blue and after multiple unit treatments of the colour’s final outlet the discharge, water colour was very light purple. The temperature was varied from 32.2⁰C to 34.33⁰C. The TDS was varied from 1252.5 mg/l to 1087.5 mg/l and the percentage removal efficiency of TDS was varied from 21.47% to 42.7%. The TSS was varied from 4 mg/l to 4.5 mg/l and the percentage removal efficiency of TSS was varied from 98.48% to 98.21%. The pH value was varied from 6.48 to 7.63. The DO value in the inlet was varied from 6.47 mg/l to 6.775 mg/l. The BOD was recorded from 12.75 mg/l to 17.75 mg/l and the percentage removal efficiency of BOD was varied from 89.92% to 87.24%. The COD was varied from 33.75 mg/l to 34.25 mg/l and the percentage removal efficiency of COD was varied from 91.11% to 90.5%. It is conjectured that the values of the measured parameters are seen to be within the permissible limit as per the standard of the Department of Environment (DoE) of Bangladesh.


1988 ◽  
Vol 20 (1) ◽  
pp. 65-72 ◽  
Author(s):  
Rurik Skogman ◽  
Reino Lammi

The requirements imposed on the Finnish forest products industry by the water authorities have focused on the reduction of BOD and suspended solids in the wastewaters. The industry has tried to comply with these requirements, first through internal measures such as process changes and closed systems. When these have not been sufficient, external treatment has been resorted to. The Wilh. Schauman Company in Jakobstad has chosen activated sludge with extended aeration from among the available methods for treating effluent. The plant has operated since the beginning of 1986 with extremely good results. In addition to the reduction of BOD and suspended solids, there has been a marked decrease of chlorinated phenols. Chlorinated substances with higher molecular weight are also removed during the process.


1992 ◽  
Vol 25 (1) ◽  
pp. 45-51 ◽  
Author(s):  
Larbi Tebai ◽  
Ioannis Hadjivassilis

Soft drinks industry wastewater from various production lines is discharged into the Industrial Effluent Treatment Plant. The traditional coagulation/flocculation method as first step, followed by biological treatment as second step, has been adopted for treating the soft drinks industry wastewaters. The performance of the plant has been evaluated. It has been found that the effluent characteristics are in most cases in correspondence with the requested standards for discharging the effluent into the Nicosia central sewerage system.


Author(s):  
Saurabh N. Joglekar ◽  
Pratik D. Solankey ◽  
Sachin A. Mandavgane ◽  
Bhaskar D. Kulkarni

2019 ◽  
Vol 7 (2) ◽  
pp. 113-115 ◽  
Author(s):  
Karishma Shamarukh ◽  
- Mohammad Omar Faruq ◽  
Nasrin Jahan ◽  
Amina Sultana ◽  
Ridwan Naim Faruq

Hydrogen sulfide is a notorious agent known to cause serious injuries in the occupational field. We are going to discussa case of a 20 years old male working in a effluent treatment plant in Savar, Bangladesh who accidentally entered thefume room and was exposed to the toxic gas. He lost consciousness and was brought to our care from a local hospitalafter endotracheal intubation condition. He was found in state of unconsciousness grade III on admission to our ICU.His brain CT scan revealed diffuse cerebral edema. Chest X-ray revealed finding suggestive of diffuse pneumonitis.Cardiology evaluation suggested Toxic cardiomyopathy as his high sensitive Troponin I was very high on admission (2037ng/L). Supportive care was given in the form of mechanical ventilation, antibiotics, anticonvulsant andanti-ischemic medications. Patient regained consciousness on day 10 after admission and gradually improvedclinically. By the end of the month of stay in hospital he was significantly improved. Bangladesh Crit Care J September 2019; 7(2): 113-115


2020 ◽  
Vol 2 (6) ◽  
Author(s):  
Amit Aggarwal ◽  
Manpreet Bhalla ◽  
Khan Hena Fatima

Background. Organisms possessing the bla NDM-1 gene (responsible for carbapenem resistance) with a class-1 integron can acquire many other antibiotic resistance genes from the community sewage pool and become multidrug-resistant superbugs. In this regard, hospital sewage, which contains a large quantity of residual antibiotics, metals and disinfectants, is being recognized as a significant cause of antimicrobial resistance (AMR) origination and spread across the major centres of the world and is thus routinely investigated as a marker for tracing the origin of drug resistance. Therefore, in this study, an attempt has been made to identify and characterize the carbapenem-resistant microbes associated with integron genes amongst the organisms isolated from the effluent treatment plant (ETP) installed in a tertiary respiratory care hospital in Delhi, India. Methods. One hundred and thirty-eight organisms belonging to Escherichia , Klebsiella , Pseudomonas and Acinetobacter spp. were collected from the incoming and outgoing sewage lines of the ETP. Carbapenem sensitivity and characterization was performed by the imipenem and imipenem-EDTA disc diffusion method. Later DNA extraction and PCR steps were performed for the Int-1 and bla NDM-1 genes. Results. Of the 138 organisms, 86 (62.3 %) were imipenem-resistant (P<0.05). One hundred and twenty-four (89.9 %) organisms had one or both of the genes. Overall, the bla NDM-1 gene (genotypic resistance) was present in 71 % (98/138) of organisms. 53.6 % (74/138) organisms were double gene-positive (bla NDM-1 + Int-1), of which 40 were producing the metallo-beta-lactamase enzyme, making up almost 28.9 % (40/138) of the collected organisms. Conclusion. The current study strengthens the hypothesis that Carbapenem resistant organisms are in a high-circulation burden through the human gut and hospital ETPs are providing an environment for resistance origination and amplification.


2021 ◽  
Vol 38 (1) ◽  
pp. 27-30
Author(s):  
Sangita Ahmed ◽  
Rakibul Hasan ◽  
Sumaiya Aziz Khan ◽  
Razu Ahmed

Bangladesh has achieved rapid industrialization in recent years. However, many of these industries lack proper effluent treatment plant and discharge untreated effluent laden with different heavy metals into the major rives that surround these industries, affecting the environment as well as human and animal health. Aiming to develop a sustainable effluent treatment plant, a heavy metal tolerant Bacillus pumillus isolated from polluted river water of Bangladesh was studied for its chromium bioremediation potential. Reduction of hexavalent chromium using the Sdiphenylcarbazide (DPC) method showed that whole cells of the Bacillus pumillus reduced 89.5%, 75%, 73% and 45% of 1.0, 2.5, 5 and 10mg/L Cr(VI) to Cr(III), respectively. This bacterium reduced 100% of 20mg/L Cr(VI) to Cr(III) within 8 hours, in a growth associated pattern. A 20kb plasmid was detected in this Bacillus pumillus, and loss of this plasmid did not cause complete impairment of chromium tolerance capacity, though the tolerance efficiency was reduced. The Bacillus pumillus studied in the current study therefore shows its potential to develop a sustainable chromium bioremediation method. Bangladesh J Microbiol, Volume 38, Number 1, June 2021, pp 27-30


2013 ◽  
Vol 35 (1) ◽  
Author(s):  
Suzana Cláudia Silveira Martins ◽  
Genilton Da Silva Faheina Junior ◽  
Bárbara De Melo Machado ◽  
Claudia Miranda Martins

Sign in / Sign up

Export Citation Format

Share Document