Electrochemical treatment of copper cyanide wastewaters using stainless steel electrodes

1998 ◽  
Vol 38 (6) ◽  
pp. 261-268 ◽  
Author(s):  
L. Szpyrkowicz ◽  
F. Zilio-Grandi ◽  
S.N. Kaul ◽  
S. Rigoni-Stern

A study was carried out to define the best conditions for the simultaneous electroxidation of cyanides and recovery of copper as a metallic deposition on the cathode from weak concentration rinse wastewaters, using plate stainless steel electrodes. A direct electroxidation process and an indirect electroxidation in a chloriderich medium were tested at pH from 10 to 13. The results show that the process of the direct electroxidation is feasible and economically convenient if conducted at pH 13. It was possible to reduce copper concentration from 470 mg−1 by 79% in 1.5 h, at an energy consumption of 17 kWh kg−1 and to recover 335.3 mg of Cu as pure metal, electrodeposited on the cathode. The CuO film formed simultaneously on the anode had catalytic properties for CN− electroidation. The efficiency of the destruction of cyanides was in the same order of magnitude, with kinetics being of first order with respect to cyanide concentration (first order reaction rate k = 0.007 min−1).

2014 ◽  
Vol 28 (2) ◽  
pp. 231-237 ◽  
Author(s):  
Lech W. Szajdak ◽  
Jerzy Lipiec ◽  
Anna Siczek ◽  
Artur Nosalewicz ◽  
Urszula Majewska

Abstract The aim of this study was to verify first-order kinetic reaction rate model performance in predicting of leaching of atrazine and inorganic compounds (K+1, Fe+3, Mg+2, Mn+2, NH4 +, NO3 - and PO4 -3) from tilled and orchard silty loam soils. This model provided an excellent fit to the experimental concentration changes of the compounds vs. time data during leaching. Calculated values of the first-order reaction rate constants for the changes of all chemicals were from 3.8 to 19.0 times higher in orchard than in tilled soil. Higher first-order reaction constants for orchard than tilled soil correspond with both higher total porosity and contribution of biological pores in the former. The first order reaction constants for the leaching of chemical compounds enables prediction of the actual compound concentration and the interactions between compound and soil as affected by management system. The study demonstrates the effectiveness of simultaneous chemical and physical analyses as a tool for the understanding of leaching in variously managed soils.


2019 ◽  
Vol 292 ◽  
pp. 01063
Author(s):  
Lubomír Macků

An alternative method of determining exothermic reactor model parameters which include first order reaction rate constant is described in this paper. The method is based on known in reactor temperature development and is suitable for processes with changing quality of input substances. This method allows us to evaluate the reaction substances composition change and is also capable of the reaction rate constant (parameters of the Arrhenius equation) determination. Method can be used in exothermic batch or semi- batch reactors running processes based on the first order reaction. An example of such process is given here and the problem is shown on its mathematical model with the help of simulations.


2000 ◽  
Vol 65 (12) ◽  
pp. 857-866
Author(s):  
Mladjen Micevic ◽  
Slobodan Petrovic

The alcoholysis of 1,2,2-trimethylpropyl-methylfluorophosphonate (soman) was examined with a series of alkoxides and in corresponding alcohols: methanol, ethanol, 1-propanol, 2-propanol, 2-methoxyethanol and 2-ethoxyethanol. Soman reacts with the used alkoxides in a second order reaction, first order in each reactant. The kinetics of the reaction between 1,2,2-trimethylpropyl-methylfluorophosphonate and ethanol in the presence of diethylenetriamine was also examined. A third order reaction rate constant was calculated, first order in each reactant. The activation energy, frequency factor and activation entropy were determined on the basis of the kinetic data.


1996 ◽  
Vol 34 (9) ◽  
pp. 41-48 ◽  
Author(s):  
Jih-Gaw Lin ◽  
Cheng-Nan Chang ◽  
Jer-Ren Wu ◽  
Ying-Shih Ma

We investigated the effects of pH, ionic strength, catalyst, and initial concentration on both decomposition of 2-chlorophenol (2-cp) and removal of total organic carbon (TOC) in aqueous solution with ultrasonic amplitude 120 μm and H2O2 (200 mg/l). When the initial concentrations of 2-cp was 100 mg/l and the pH was controlled at 3, the rate of 2-cp decomposition was enhanced up to 6.6-fold and TOC removal up to 9.8-fold over pH controlled at 11. At pH 3, the efficiency of decomposition of 2-cp was 99% but the removal of TOC was only 63%; a similar situation applied at pH 7 and 11. Hence intermediate compounds were produced and 2-cp was not completely mineralized. When the concentration of ionic strength was increased from 0.001 to 0.1 M, the rate of 2-cp decomposition was enhanced only 0.3-fold, whereas the TOC removal was not enhanced. In comparison of the effects of pH and ionic strength, pH had greater influence on both 2-cp decomposition and TOC removal than ionic strength. The effect of a catalyst (FeSO4) on decomposition of 2-cp was insignificant comparing with direct addition of H2O2. The reaction rate at a smaller initial concentration of 2-cp (10 mg/l) was more rapid than at a greater one (100 mg/l). The rate of 2-cp decomposition and TOC removal appeared to follow pseudo-first-order reaction kinetics.


1993 ◽  
Vol 58 (3) ◽  
pp. 538-546 ◽  
Author(s):  
Refat M. Hassan ◽  
Sahr A. El-Gaiar ◽  
Abd El-Hady M. El-Summan

The kinetics of permanganate oxidation of selenium dioxide in perchloric acid solutions at a constant ionic strength of 2.0 mol dm-3 has been investigated spectrophotometrically. A first-order reaction in [MnO4-] and fractional order with respect to selenium(IV) were observed. The reaction rate was found to be pH-independent at lower acid concentrations ([H+] < 0.5 mol dm-3) and was acid-catalyzed beyond this range. Addition of Mn2+ and F- ions leads to the prediction that MnO4- is the sole reactive species in the oxidation process. A tentative reaction mechanism consistent with the reaction kinetics has been proposed.


1969 ◽  
Vol 46 (2) ◽  
pp. 120-126
Author(s):  
Betty G. García

The crude-protein fraction of green plantains was isolated and found to cause an inversion of sucrose solutions. The rate of inversion of sucrose by the invertase of the green plantain is proportional to the concentration of enzyme. The inversion of sucrose, when catalyzed by green-plantain invertase, appears to follow a first-order reaction rate at low substrate concentrations (below 6 percent). As the concentration of sucrose exceeds 6 percent the rate of the reaction changes to zero order. An optimum pH of 4.15 and an optimum temperature of 44.4° C. were obtained for the activity of green-plantain invertase.


2004 ◽  
Vol 69 (10) ◽  
pp. 1877-1888
Author(s):  
Mária Oščendová ◽  
Jitka Moravcová

The kinetics of methylation of methyl 5-deoxy-α-D-xylofuranoside (1), methyl 5-deoxy-β-D-xylofuranoside (2) and their partly methylated derivatives with methyl iodide in the presence of sodium hydroxide in acetonitrile was studied. The reaction rate was independent of the base concentration during the first half-time only and the methylation proceeded as a first-order reaction. The rate constants of all side and consecutive reactions were calculated and the influence of both polar and steric effect is discussed. The methylation of 1 was highly regioselective giving almost exclusively 5-deoxy-2-O-methyl-α-D-xylofuranoside.


2019 ◽  
Vol 15 (5-6) ◽  
Author(s):  
H. Hadiyanto ◽  
Marcelinus Christwardana ◽  
Meiny Suzery ◽  
Heri Sutanto ◽  
Ayu Munti Nilamsari ◽  
...  

AbstractPhycocyanin is a natural substance that can be used as an antioxidant and food colorant. The quality of phycocyanin deteriorates when it is exposed to heat, and such deterioration is evidenced by decreases in its antioxidant activity and color. Encapsulation, which introduces a coating material over a substance of interest, has been applied to prevent changes in substance quality. The objective of the present research is to evaluate the kinetics of thermal degradation of phycocyanin coated with carrageenan or chitosan. Encapsulated phycocyanin samples were exposed to temperatures of 40, 50, or 60 °C for 90 min, and kinetics of the resulting degradation was evaluated to determine changes in sample quality. The results showed that the thermal degradation of encapsulated phycocyanin at 40–60 °C follows first-order reaction kinetics with reaction rate constants (k) of 4.67–9.17 × 10–5 s-1 and 3.83–7.67 × 10–5 s-1 for carrageenan and chitosan, respectively, and that the k of encapsulated phycocyanin is slower than that obtained from samples without the coating materials (control). Encapsulation efficiencies (EE) of 68.66 % and 76.45 %, as well as loading capacities of 45.28 % and 49.16 %, were, respectively, obtained for carrageenan and chitosan.


Sign in / Sign up

Export Citation Format

Share Document