scholarly journals Occurrence and Some Characterization Studies of Invertase in the Green Plantain Fruit (Musa parasidiaca)

1969 ◽  
Vol 46 (2) ◽  
pp. 120-126
Author(s):  
Betty G. García

The crude-protein fraction of green plantains was isolated and found to cause an inversion of sucrose solutions. The rate of inversion of sucrose by the invertase of the green plantain is proportional to the concentration of enzyme. The inversion of sucrose, when catalyzed by green-plantain invertase, appears to follow a first-order reaction rate at low substrate concentrations (below 6 percent). As the concentration of sucrose exceeds 6 percent the rate of the reaction changes to zero order. An optimum pH of 4.15 and an optimum temperature of 44.4° C. were obtained for the activity of green-plantain invertase.

2014 ◽  
Vol 28 (2) ◽  
pp. 231-237 ◽  
Author(s):  
Lech W. Szajdak ◽  
Jerzy Lipiec ◽  
Anna Siczek ◽  
Artur Nosalewicz ◽  
Urszula Majewska

Abstract The aim of this study was to verify first-order kinetic reaction rate model performance in predicting of leaching of atrazine and inorganic compounds (K+1, Fe+3, Mg+2, Mn+2, NH4 +, NO3 - and PO4 -3) from tilled and orchard silty loam soils. This model provided an excellent fit to the experimental concentration changes of the compounds vs. time data during leaching. Calculated values of the first-order reaction rate constants for the changes of all chemicals were from 3.8 to 19.0 times higher in orchard than in tilled soil. Higher first-order reaction constants for orchard than tilled soil correspond with both higher total porosity and contribution of biological pores in the former. The first order reaction constants for the leaching of chemical compounds enables prediction of the actual compound concentration and the interactions between compound and soil as affected by management system. The study demonstrates the effectiveness of simultaneous chemical and physical analyses as a tool for the understanding of leaching in variously managed soils.


2019 ◽  
Vol 292 ◽  
pp. 01063
Author(s):  
Lubomír Macků

An alternative method of determining exothermic reactor model parameters which include first order reaction rate constant is described in this paper. The method is based on known in reactor temperature development and is suitable for processes with changing quality of input substances. This method allows us to evaluate the reaction substances composition change and is also capable of the reaction rate constant (parameters of the Arrhenius equation) determination. Method can be used in exothermic batch or semi- batch reactors running processes based on the first order reaction. An example of such process is given here and the problem is shown on its mathematical model with the help of simulations.


2002 ◽  
Vol 67 (2) ◽  
pp. 103-109 ◽  
Author(s):  
Ljiljana Jelisavac ◽  
Milos Filipovic

A suitable kinetic model for the consumption of stabilizer (diphenylamine) in single base gun propellants was investigated and successfully verified. The model assumes that a reaction of shifting order can be applied for the consumption of diphenylamine in single base gun propellants. It was found that the experimental data were well evaluated by a first-order reaction at high concentrations of diphenylamine in the propellant, but by a zero-order reaction at low concentrations during the final phase of the propellant life time. The mechanism of diphenylamine depletion was discussed with relation to the model and the ageing behavior of the propellants. The kinetic parameters of this model, which permit the calculation of the time up to complete consumption of the diphenylamine, were determined. The results were compared with the kinetic data obtained by a widely accepted model, which combines formally reactions of first and zero order, designated as an "exponential and linear" model. All comparisons gave satisfactory agreement.


2000 ◽  
Vol 65 (12) ◽  
pp. 857-866
Author(s):  
Mladjen Micevic ◽  
Slobodan Petrovic

The alcoholysis of 1,2,2-trimethylpropyl-methylfluorophosphonate (soman) was examined with a series of alkoxides and in corresponding alcohols: methanol, ethanol, 1-propanol, 2-propanol, 2-methoxyethanol and 2-ethoxyethanol. Soman reacts with the used alkoxides in a second order reaction, first order in each reactant. The kinetics of the reaction between 1,2,2-trimethylpropyl-methylfluorophosphonate and ethanol in the presence of diethylenetriamine was also examined. A third order reaction rate constant was calculated, first order in each reactant. The activation energy, frequency factor and activation entropy were determined on the basis of the kinetic data.


1996 ◽  
Vol 34 (9) ◽  
pp. 41-48 ◽  
Author(s):  
Jih-Gaw Lin ◽  
Cheng-Nan Chang ◽  
Jer-Ren Wu ◽  
Ying-Shih Ma

We investigated the effects of pH, ionic strength, catalyst, and initial concentration on both decomposition of 2-chlorophenol (2-cp) and removal of total organic carbon (TOC) in aqueous solution with ultrasonic amplitude 120 μm and H2O2 (200 mg/l). When the initial concentrations of 2-cp was 100 mg/l and the pH was controlled at 3, the rate of 2-cp decomposition was enhanced up to 6.6-fold and TOC removal up to 9.8-fold over pH controlled at 11. At pH 3, the efficiency of decomposition of 2-cp was 99% but the removal of TOC was only 63%; a similar situation applied at pH 7 and 11. Hence intermediate compounds were produced and 2-cp was not completely mineralized. When the concentration of ionic strength was increased from 0.001 to 0.1 M, the rate of 2-cp decomposition was enhanced only 0.3-fold, whereas the TOC removal was not enhanced. In comparison of the effects of pH and ionic strength, pH had greater influence on both 2-cp decomposition and TOC removal than ionic strength. The effect of a catalyst (FeSO4) on decomposition of 2-cp was insignificant comparing with direct addition of H2O2. The reaction rate at a smaller initial concentration of 2-cp (10 mg/l) was more rapid than at a greater one (100 mg/l). The rate of 2-cp decomposition and TOC removal appeared to follow pseudo-first-order reaction kinetics.


1993 ◽  
Vol 58 (3) ◽  
pp. 538-546 ◽  
Author(s):  
Refat M. Hassan ◽  
Sahr A. El-Gaiar ◽  
Abd El-Hady M. El-Summan

The kinetics of permanganate oxidation of selenium dioxide in perchloric acid solutions at a constant ionic strength of 2.0 mol dm-3 has been investigated spectrophotometrically. A first-order reaction in [MnO4-] and fractional order with respect to selenium(IV) were observed. The reaction rate was found to be pH-independent at lower acid concentrations ([H+] < 0.5 mol dm-3) and was acid-catalyzed beyond this range. Addition of Mn2+ and F- ions leads to the prediction that MnO4- is the sole reactive species in the oxidation process. A tentative reaction mechanism consistent with the reaction kinetics has been proposed.


1994 ◽  
Vol 34 (7) ◽  
pp. 995 ◽  
Author(s):  
JF Angus ◽  
M Ohnishi ◽  
T Horie ◽  
RL Williams

Complementary field and laboratory studies were conducted to determine whether laboratory measurements of net nitrogen (N) mineralisation under anaerobic conditions could be used to predict field rates in a flooded soil and N uptake by a rice crop. The laboratory experiment consisted of measurements of ammonium accumulation at 10, 20, 30, and 40�C for 7, 14, and 28 days of anaerobic incubation. There was no accumulation of ammonium at 10�C, but increasing ammonification rate at temperatures of 20�C was observed, except for a slower rate at 40�C after 14 days. Two models were tested on the data: a zero-order reaction in which rate of mineralisation was a linear function of temperature; a first-order reaction in which net N mineralisation rate was a proportion of a depleting pool of labile organic N. In the second model, the rate was also linearly related to temperature. Both models fitted the laboratory data well (R2 = 0.94 and 0.97, respectively), but the second model accounted better for mineralisation at 40�C for the 28-day incubation. These models were then run, using daily mean temperatures over a rice-growing season, to predict net mineralisation in the field. The predictions were compared with measured net N mineralisation in a flooded soil and N uptake by the crop measured throughout the season in the field from which the incubated soil was sampled. Net N mineralisation and crop uptake increased throughout the season, reaching maximum values of 115 and 111 kg N/ha at maturity. The zero-order and first-order models both predicted net N mineralisation accurately until the middle of the season, after which the zero-order model overestimated net N mineralisation but the first-order model predicted the reduction in the rate of net N mineralisation with reasonable accuracy. The close agreement between the laboratory incubations and field measurements of net mineralisation and crop N uptake suggest that incubation tests may provide useful information for including in a model to assist rice growers' decisions about N fertiliser.


2011 ◽  
Vol 233-235 ◽  
pp. 481-486
Author(s):  
Wen Bo Zhao ◽  
Ning Zhao ◽  
Fu Kui Xiao ◽  
Wei Wei

The synthesis of dimethyl carbonate (DMC) from urea and methanol includes two main reactions: one amino of urea is substituted by methoxy to produce the intermediate methyl carbamate (MC) which further converts to DMC via reaction with methanol again. In a stainless steel autoclave, the kinetics of these reactions was separately investigated without catalyst and with Zn-containing catalyst. Without catalyst, for the first reaction, the reaction kinetics can be described as first order with respect to the concentrations of methanol and methyl carbamate (MC), respectively. For the second reaction, the results exhibit characteristics of zero-order reaction. Over Zn-containing catalyst, the first reaction is neglected in the kinetics model since its rate is much faster than second reaction. After the optimization of reaction condition, the macro-kinetic parameters of the second reaction are obtained by fitting the experimental data to a pseudo-homogenous model, in which a side reaction of DMC synthesis is incorporated since it decreases the yield of DMC drastically at high temperature. The activation energy of the reaction from MC to DMC is 104 KJ/mol while that of the side reaction of DMC is 135 KJ/mol.


1968 ◽  
Vol 21 (12) ◽  
pp. 2913 ◽  
Author(s):  
NP Singh ◽  
VN Singh ◽  
MP Singh

The osmium-tetroxide-catalysed oxidation of mandelate ion by hexacyanoferrate(111) ion has been studied kinetically. The reaction rate has been found to be independent of hexacyanoferrate(111) ion while the order with respect to both osmium tetroxide and mandelate ion comes out to be unity. The reaction rate follows first-order kinetics at low hydroxyl ion concentration and becomes zero order at higher concentrations. The course of the reaction has been considered to proceed through the formation of an activated mandelate-OsO4, complex which decomposes in alkaline medium giving reduced osmium(V1) followed by a fast oxidation by hexacyanoferrate(111) ion. The probable course of the reactions is also described with the help of its oxidation product, benzoic acid.


2004 ◽  
Vol 69 (10) ◽  
pp. 1877-1888
Author(s):  
Mária Oščendová ◽  
Jitka Moravcová

The kinetics of methylation of methyl 5-deoxy-α-D-xylofuranoside (1), methyl 5-deoxy-β-D-xylofuranoside (2) and their partly methylated derivatives with methyl iodide in the presence of sodium hydroxide in acetonitrile was studied. The reaction rate was independent of the base concentration during the first half-time only and the methylation proceeded as a first-order reaction. The rate constants of all side and consecutive reactions were calculated and the influence of both polar and steric effect is discussed. The methylation of 1 was highly regioselective giving almost exclusively 5-deoxy-2-O-methyl-α-D-xylofuranoside.


Sign in / Sign up

Export Citation Format

Share Document