Partitioning of Cr, Cu, Pb and Zn in sewage sludge incineration by rotary kiln and fluidized bed furnaces

2000 ◽  
Vol 41 (8) ◽  
pp. 61-68 ◽  
Author(s):  
G. Mininni ◽  
C. M. Braguglia ◽  
D. Marani

The behaviour of four metals (Cr, Cu, Pb, Zn) during sewage sludge incineration was studied in eight pilot plant tests performed with a rotary kiln (RK) and a fluidised bed (FB) furnace. To simulate sludge co-incineration with hazardous wastes, in three FB tests feed sludge was mixed with chlorinated organic compounds. Chromium and copper showed similar concentrations both in bottom or cyclone ash and in fly ash, even at high chlorine input and high combustion temperature. In contrast, zinc and lead concentrations in fly ash produced in RK tests are one or two orders of magnitude higher than those in bottom ash. However, not even these two metals showed significant enrichment in FB tests carried out at high chlorine input. The predictive capability of a thermodynamic model was checked by comparing predicted metal volatilisation in the combustion chamber with experimental metal enrichment in the fly ash. Large discrepancies were observed in FB tests carried out at high chlorine content, where Pb, Zn, and Cu are predicted to volatilise in great extent, andin RK tests where zinc volatilisation is not predicted. Likely explanations of these discrepancies are the very short solid residence times in the FB furnace (non equilibrium conditions) and the incomplete mixing conditions in the RK furnace (pyrolysis pockets). From the environmental impact point of view, the pilot tests suggest that sludge incineration with fluidised bed furnace is safer than the one using rotary kiln furnace.

2020 ◽  
Vol 10 (17) ◽  
pp. 6075
Author(s):  
Ahmad Assi ◽  
Fabjola Bilo ◽  
Alessandra Zanoletti ◽  
Laura Borgese ◽  
Laura Eleonora Depero ◽  
...  

This study presents an innovative stabilization method of fly ash derived from co-combustion of municipal solid waste and sewage sludge. Bottom ash, obtained from the same process, is used as a stabilizing agent. The stabilization method involved the use of two other components—flue gas desulfurization residues and coal fly ash. Leaching tests were performed on stabilized samples, aged in a laboratory at different times. The results reveal the reduction of the concentrations of heavy metals, particularly Zn and Pb about two orders of magnitude lower with respect to fly ash. The immobilization of heavy metals on the solid material mainly depends on three factors—the amount of used ash, the concentrations of Zn and Pb in as-received fly ash and the pH of the solution of the final materials. The inert powder, obtained after the stabilization, is a new eco-material, that is promising to be used as filler in new sustainable composite materials.


2021 ◽  
Author(s):  
Wafa Hassen ◽  
Bilel Hassen ◽  
Rim Werhani ◽  
Yassine Hidri ◽  
Abdennaceur Hassen

The valorization of different organic residues like municipal solid wastes, sewage sludge and olive mill wastewater is becoming more and more worrying in the different modern communities and is becoming relevant and crucial in terms of environmental preservation. The choice of the treatment technique should not be only from the point of view of economic profitability but, above all, must consider the efficiency of the treatment method. Thus, an attempt to remove polyphenols from olive mill wastewater would have a double interest: on the one hand, to solve a major environmental problem and to recover and valorize the olive mill wastewater for advanced applications in food processing and soil amendments. It is also interesting to think of associating two harmful wastes by co-composting such as sewage sludge-vegetable gardens, sewage sludge-municipal solid waste, and green wastes-olive mill wastewater…, to get a mixed compost of good physical–chemical and biological qualities useful for agricultural soil fertilization. Finally, in order to be more practical, we will describe specifically in this chapter a new variant of composting and co-composting technology intended for waste treatment that is very simple, inexpensive and easy to implement.


2018 ◽  
Vol 11 (1) ◽  
pp. 81-90
Author(s):  
Lucie Bartoňová

Possible interaction of volatilized As and S with CaO and Fe2O3 (creating solid product) could efficiently improve coal combustion flue gas cleaning. For this reason, S-CaO, As-CaO, S- Fe2O3 and As- Fe2O3 relationships were evaluated in bottom ash and fly ash fractions from fluidised-bed co-combustion of coal and wastes (and limestone as desulphurization additive) through calculation of correlation coefficients and composition of magnetic concentrates. It was concluded that S exhibited a dominant association with CaO while As exhibited affinity to both CaO and Fe2O3 - the significance differed a little in bottom ash and fly ash. In the bottom ash, the affinity of As to CaO was more significant, while in the fly ash the association to Fe2O3 slightly prevailed.


Fuel ◽  
2008 ◽  
Vol 87 (8-9) ◽  
pp. 1552-1563 ◽  
Author(s):  
Yao Bin Yang ◽  
Lynne Sliwinski ◽  
Vida Sharifi ◽  
Jim Swithenbank

2019 ◽  
Vol 33 (9) ◽  
pp. 9363-9366 ◽  
Author(s):  
Juguan Gao ◽  
Miki Matsushita ◽  
Genki Horiguchi ◽  
Ryosuke Fujii ◽  
Mayumi Tsukada ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1691 ◽  
Author(s):  
Witold Żukowski ◽  
Przemysław Migas ◽  
Dariusz Bradło ◽  
Piotr Dulian

The results of a photocatalytic process performed in a new type of inclined, three-phase fluidised bed reactor with a periodic photocatalyst film are presented. These phases were fly ash cenospheres coated with TiO2, an aqueous solution of methylene blue and an air stream passing from the bottom of the photoreactor. The cenospheres have a density lower than water and could thus form a catalytic film on a top irradiated window. The formed surface film is stable but is easy to break and be reproduced in a cyclic air-sparged process. Mixing was performed in either a cyclic or a continuous manner. From an operational point of view, the best variant of mixing was a 10 s air-sparge/10 s break with a 50% duty cycle, because it provided the same discolouration efficiency and reduced energy demand by 50% in comparison with the continuous mixing. Due to film formation, the proposed catalytic reactor enables a substantial reduction in the energy required for mixing while maintaining the desired degree of discolouration.


2018 ◽  
Vol 46 ◽  
pp. 00009
Author(s):  
Waldemar Kępys

The production of energy from biomass causes generation of solid waste, in the forms of fly ash and bottom ash. Owing to both economic considerations and environmental protection, it is required to recover those types of waste. The physical and economic properties of bottom ash indicate that waste ash can constitute a substitute of sand in the production of mortars. Consequently, tests were performed on the influence of bottom ash, used as sand substitute, on the mechanical properties of mortar. The test results indicated a possibility of using bottom ash as a mortar component


Sign in / Sign up

Export Citation Format

Share Document