Functional metal-binding proteins by metal-stimulated bacteria for the development of an innovative metal removal technology

2003 ◽  
Vol 47 (10) ◽  
pp. 109-115 ◽  
Author(s):  
T. Antsuki ◽  
D. Sano ◽  
T. Omura

Heavy metal pollution has become an environmental problem throughout the world because heavy metals can be accumulated into the food chain and bring about serious problems, not only for ecosystems but also for human health. In this study, functional metal-binding proteins (FMBPs) were isolated from a metal-stimulated activated sludge culture with the aim of applying them to an innovative metal removal technology. Activated sludge bacteria was cultured in growth media including copper ion, and the stimulation of protein production by copper ion led to the 14% increase in a quantity of extracted crude proteins per 1 g of bacterial cell pellet (wet). In order to isolate FMBPs, extracted crude proteins were applied to the immobilized metal affinity column in which each of copper, nickel and zinc was used as a ligand. Several FMBPs were succesfully isolated from copper-stimulated bacteria. One of FMBPs (molecular weight of about 40 kDa) exhibited an ability to adsorb all three metals. The multi metal-binding property of this FMBP could be applied to an innovative metal removal technology. Furthermore, isolated FMBPs that could capture only one kind of heavy metal would also be attractive as a metal adsorbent in recovering a specific metal as a resource from wastewater, including several heavy metals.

2006 ◽  
Vol 53 (6) ◽  
pp. 221-226 ◽  
Author(s):  
D. Sano ◽  
K. Myojo ◽  
T. Omura

Water pollution with toxic heavy metals is of growing concern because heavy metals could bring about serious problems for not only ecosystems in the water environment but also human health. Some metal removal technologies have been in practical use, but much energy and troublesome treatments for chemical wastes are required to operate these conventional technologies. In this study, heavy metal-binding proteins (HMBPs) were obtained from metal-stimulated activated sludge culture with affinity chromatography using copper ion as a ligand. Two-dimensional electrophoresis revealed that a number of proteins in activated sludge culture were recovered as HMBPs for copper ion. N-termini of five HMBPs were determined, and two of them were found to be newly discovered proteins for which no amino acid sequences in protein databases were retrieved at more than 80% identities. Metal-coordinating amino acids occupied 38% of residues in one of the N-terminal sequences of the newly discovered HMBPs. Since these HMBPs were expected to be stable under conditions of water and wastewater treatments, it would be possible to utilize HMBPs as novel adsorbents for heavy metal removal if mass volume of HMBPs can be obtained with protein cloning techniques.


1989 ◽  
Vol 8 (7) ◽  
pp. 1315-1321 ◽  
Author(s):  
Curtis D. Klaassen ◽  
Lois D. Lehman-Mckeeman

Metallothioneins (MTs) are cysteine-rich metal-binding proteins. These proteins play a pivotal role in heavy metal homeostasis and have been widely studied by biochemists, toxicologists, nutritional scientists, and molecular biologists. It is well established that MTs are inducible proteins. They are normally synthesized at low basal levels, but exposure to a wide variety of heavy metals and many organic compounds will dramatically increase synthesis of MTs. This paper summarizes MT induction by reviewing the chemicals that induce these proteins, the molecular mechanism involved in this induction, and the relationship between MT induction and biological function.


1996 ◽  
Vol 34 (5-6) ◽  
pp. 267-272 ◽  
Author(s):  
Ken Fukushi ◽  
Duk Chang ◽  
Sam Ghosh

The objective of this research was to investigate the feasibility of developing improved activated sludge cultures capable of removing heavy metals. Cystine, peptone, and β-glycerophosphate (BGP) stimulated metal uptake without the significant reduction of culture viability otherwise experienced in the absence of these chemicals. The cystine-peptone-BGP-grown culture exhibited the highest removal of copper and cadmium of 5.67 and 2.53 mM/g protein, respectively.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Quang-Minh Nguyen ◽  
Duy-Cam Bui ◽  
Thao Phuong ◽  
Van-Huong Doan ◽  
Thi-Nham Nguyen ◽  
...  

The effect of copper, zinc, chromium, and lead on the anaerobic co-digestion of waste activated sludge and septic tank sludge in Hanoi was studied in the fermentation tests by investigating the substrate degradation, biogas production, and process stability at the mesophilic fermentation. The tested heavy metals were in a range of concentrations between 19 and 80 ppm. After the anaerobic tests, the TS, VS, and COD removal efficiency was 4.12%, 9.01%, and 23.78% for the Cu(II) added sample. Similarly, the efficiencies of the Zn(II) sample were 1.71%, 13.87%, and 16.1% and Cr(VI) efficiencies were 15.28%, 6.6%, and 18.65%, while the TS, VS, and COD removal efficiency of the Pb(II) added sample was recorded at 16.1%, 17.66%, and 16.03% at the concentration of 80 ppm, respectively. Therefore, the biogas yield also decreased by 36.33%, 31.64%, 31.64%, and 30.60% for Cu(II), Zn(II), Cr(VI), and Pb(II) at the concentration of 80 ppm, compared to the raw sample, respectively. These results indicated that Cu(II) had more inhibiting effect on the anaerobic digestion of the sludge mixture than Zn(II), Cr(VI), and Pb(II). The relative toxicity of these heavy metals to the co-digestion process was as follows: Cu (the most toxic) > Zn > Cr > Pb (the least toxic). The anaerobic co-digestion process was inhibited at high heavy metal concentration, which resulted in decreased removal of organic substances and produced biogas.


2021 ◽  
Vol 897 ◽  
pp. 109-115
Author(s):  
Sri Martini ◽  
Kiagus Ahmad Roni ◽  
Dian Kharismadewi ◽  
Erna Yuliwaty

This review article presents the usage of various animal bones such as chicken bone, fish bone, pig bone, camel bone, and cow bone as reliable biosorbent materials to remove heavy metals contained in contaminated water and wastewater. The sources and toxicity effects of heavy metal ions are also discussed properly. Then specific insights related to adsorption process and its influential factors along with the proven potentiality of selected biosorbents especially derived from animal bone are also explained. As the biosorbents are rich in particular organic and inorganic compounds and functional groups in nature, they play an important role in heavy metal removal from contaminated solutions. Overall, after conducting study reports on the literature, a brief conclusion can be drawn that animal bone waste has satisfactory efficacy as effective, efficient, and environmentally friendly sorbent material.


Author(s):  
Himalaya Bhardwaj ◽  
Chanchal Singh ◽  
Shashi Nayyar ◽  
Sandeep Sodhi ◽  
Rajesh Jindal

Background: Farm animals may serve as bio-indicators of environmental pollution. Environmental heavy metals may disrupt the normal physiological and biochemical profile of the animals. The present study was planned to reduce the stress caused by heavy metal pollution by oral feeding of vitamin E and Selenium in heavy metals exposed buffaloes.Methods: Twenty buffaloes were selected on the basis of blood levels of heavy metals and divided into exposed and non-exposed groups. Exposed animals (n=10) were orally supplemented with 20 ml/day of Cargill E care Se® containing vitamin E, 100mg/ml and Se 0.5mg/ml for 30 days. Antioxidants, biochemical parameters and the expression of metallothionein-2 were analyzed after supplementation on 0, 15 and 30 days.Result: The levels of heavy metal were found to be elevated even after 30 days of supplementation. No significant alterations were observed in activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) after 30 days of supplementation. There was significantly (p less than 0.05) higher activity of blood glutathione and plasma Vitamin E. In supplemented group, plasma glucose, total cholesterol, aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), lactic dehydrogenase (LDH), creatine kinase (CK) and total Immunoglobulin were found to be significantly reduced in supplemented group. Expression of metal binding protein, metallothionein-2 was found to be elevated in exposed animals despite supplementation with Vitamin E and Se for 30 days.


2001 ◽  
Vol 44 (10) ◽  
pp. 53-58 ◽  
Author(s):  
L. C. Aralp ◽  
A. Erdincler ◽  
T. T. Onay

Heavy metal concentration in sludge is one of the major obstacles for the application of sludge on land. There are various methods for the removal of heavy metals in sludge. Using sulfur oxidizing bacteria for microbiological removal of heavy metals from sludges is an outstanding option because of high metal solubilization rates and the low cost. In this study, bioleaching by indigenous sulfur oxidizing bacteria was applied to sludges generated from the co-treatment of municipal wastewater and leachate for the removal of selected heavy metals. Sulfur oxidizing bacteria were acclimated to activated sludge. The effect of the high organic content of leachate on the bioleaching process was investigated in four sets of sludges having different concentrations of leachate. Sludges in Sets A, B, C and D were obtained from co-treatment of wastewater and 3%, 5%, 7% and 10% (v/v) leachate respectively. The highest Cr, Ni and Fe solubilization was obtained from Set A. Sulfur oxidizing bacteria were totally inhibited in Set D that received the highest volume of leachate.


Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1559
Author(s):  
Ida Sylwan ◽  
Hanna Runtti ◽  
Lena Johansson Westholm ◽  
Henrik Romar ◽  
Eva Thorin

Municipal wastewater management causes metal exposure to humans and the environment. Targeted metal removal is suggested to reduce metal loads during sludge reuse and release of effluent to receiving waters. Biochar is considered a low-cost sorbent with high sorption capacity for heavy metals. In this study, heavy metal sorption to sludge-derived biochar (SDBC) was investigated through batch experiments and modeling and compared to that of wood-derived biochar (WDBC) and activated carbon (AC). The aim was to investigate the sorption efficiency at metal concentrations comparable to those in municipal wastewater (<1 mg/L), for which experimental data are lacking and isotherm models have not been verified in previous works. Pb2+ removal of up to 83% was demonstrated at concentrations comparable to those in municipal wastewater, at pH 2. SDBC showed superior Pb2+ sorption capacity (maximum ~2 mg/g at pH 2) compared to WDBC and AC (<0 and (3.5 ± 0.4) × 10−3 mg/g, respectively); however, at the lowest concentration investigated (0.005 mg/L), SDBC released Pb2+. The potential risk of release of other heavy metals (i.e., Ni, Cd, Cu, and Zn) needs to be further examined. The sorption capacity of SDBC over a metal concentration span of 0.005–150 mg Pb2+/L could be predicted with the Redlich–Peterson model. It was shown that experimental data at concentrations comparable to those in municipal wastewater are necessary to accurately model and predict the sorption capacity of SDBC at these concentrations.


2018 ◽  
Vol 6 (28) ◽  
pp. 13624-13632 ◽  
Author(s):  
He Ding ◽  
Yang Chen ◽  
Tianyi Fu ◽  
Peng Bai ◽  
Xianghai Guo

Nanosheet-based magadiites are promising adsorbents with controlled interlayer space and a well-defined 2D structure, which make them new candidates for heavy metal removal.


Sign in / Sign up

Export Citation Format

Share Document