Integration of titrimetric measurement, off-gas analysis and NOx− biosensors to investigate the complexity of denitrification processes

2004 ◽  
Vol 50 (11) ◽  
pp. 135-141 ◽  
Author(s):  
S.H. McMurray ◽  
R.L. Meyer ◽  
R.J. Zeng ◽  
Z. Yuan ◽  
J. Keller

The denitrification process, namely the reduction of nitrate (NO3−) to nitrogen gas (N2), often cannot be simply modelled as a single step process. For a more complete and comprehensive model the intermediates, particularly nitrite (NO2−) and nitrous oxide (N2O), need to be investigated. This paper demonstrates the integration of titrimetric measurements and off-gas analysis with on-line nitrite plus nitrate (NOx−) biosensors, highlighting the necessity of measuring process intermediates with high time-scale resolution to study and understand the kinetics of denitrification. Investigation of activated sludge from a full-scale treatment plant showed a significant accumulation of NO2−, which appeared to impact on the overall denitrification rate measured as NOx− reduction or N2 production. A different sludge obtained from a lab-scale bioreactor produced N2O instead of N2 as the end product of denitrification. The two examples both illustrate the complexity of denitrification and stress the need for the more versatile and detailed measurement procedures, as presented in this paper.

1998 ◽  
Vol 37 (12) ◽  
pp. 317-326 ◽  
Author(s):  
F. Coen ◽  
B. Petersen ◽  
P. A. Vanrolleghem ◽  
B. Vanderhaegen ◽  
M. Henze

This paper illustrates the modelling of a full-scale industrial wastewater treatment plant. First, the hydraulics of the plant were characterised by a model-based interpretation of the results of a tracer test. The plant consists of three parallel reactors. The hydraulics of each reactor could be modelled by two tanks in series with non-equal volume. These results were confirmed by calculation of the single pass residence time distribution. Also it was found that the influent flow and the recycle flow were not distributed equally to the three reactors, resulting in different loading rates. Secondly, off-line respirometric experiments were performed to characterise the influent and to determine the sludge kinetics. The same model structure could be applied to describe the influent characteristics and the biokinetics over a period of 1 year. It was found that all wastewaters could be fractionated into three fractions and that one of the fractions was acetate-like. Concentrations of the fractions changed significantly over the year. From on-line respirometric experiments the diurnal dynamics of the influent characteristics and the kinetics of the sludge were assessed. Analysis of the respirograms showed that the wastewater composition and kinetics of the sludge did not change significantly over a short-term period of 40 hours.


1981 ◽  
Vol 20 (02) ◽  
pp. 90-93
Author(s):  
P.B. Parab ◽  
U.R. Raikar ◽  
R.D. Ganatra ◽  
M. C. Patel

Phenolphthalexon, a compound with iminodiacetic acid as a functional group, has been labelled with 113mIn to high chemical purity and its usefulness in studies of biliary excretion patency has been studied. Organ distribution of 113mIn-phenolphthalexon in mice was characterized by high liver uptake (50.8% of the administered dose after 5 min) and rapid clearance through the gall bladder. An animal model for studying obstruction of biliary excretion has been developed. Data on the kinetics of the radiopharmaceutical were obtained by collecting in-vivo data through an on-line computer.


2006 ◽  
Vol 6 (2) ◽  
pp. 125-130
Author(s):  
C.-H. Hung ◽  
K.-H. Tsai ◽  
Y.-K. Su ◽  
C.-M. Liang ◽  
M.-H. Su ◽  
...  

Due to the extensive application of artificial nitrogen-based fertilizers on land, groundwater from the central part of Taiwan faces problems of increasing concentrations of nitrate, which were measured to be well above 30 mg/L all year round. For meeting the 10 mg/L nitrate standard, optimal operations for a heterotrophic denitrification pilot plant designed for drinking water treatment was investigated. Ethanol and phosphate were added for bacteria growing on anthracite to convert nitrate to nitrogen gas. Results showed that presence of high dissolved oxygen (around 4 mg/L) in the source water did not have a significantly negative effect on nitrogen removal. When operated under a C/N ratio of 1.88, which was recommended in the literature, nitrate removal efficiency was measured to be around 70%, sometimes up to 90%. However, the reactor often underwent severe clogging problems. When operated under C/N ratio of 1.0, denitrification efficiency decreased significantly to 30%. Finally, when operated under C/N ratio of 1.5, the nitrate content of the influent was almost completely reduced at the first one-third part of the bioreactor with an overall removal efficiency of 89–91%. Another advantage for operating with a C/N ratio of 1.5 is that only one-third of the biosolids was produced compared to a C/N value of 1.88.


1994 ◽  
Vol 30 (6) ◽  
pp. 31-40 ◽  
Author(s):  
Hiroyshi Emori ◽  
Hiroki Nakamura ◽  
Tatsuo Sumino ◽  
Tadashi Takeshima ◽  
Katsuzo Motegi ◽  
...  

For the sewage treatment plants near rivers and closed water bodies in urbanized areas in Japan and European countries, there is a growing demand for introduction of advanced treatment processes for nitrogen and phosphorus from the viewpoints of water quality conservation and environmental protection. In order to remove nitrogen by the conventional biological treatment techniques, it is necessary to make a substantial expansion of the facility as compared with the conventional activated sludge process. In such urbanized districts, it is difficult to secure a site and much capital is required to expand the existing treatment plant. To solve these problems, a compact single sludge pre-denitrification process using immobilized nitrifiers was developed. Dosing the pellets, which are suitable for nitrifiers growth and physically durable, into the nitrification tank of single sludge pre-denitrification process made it possible to perform simultaneous removal of BOD and nitrogen in a retention time equal to that in the conventional activated sludge process even at the low water temperature of about 10 °C. The 3,000 m3/d full-scale conventional activated sludge plant was retrofitted and has been successfully operated.


1997 ◽  
Vol 36 (4) ◽  
pp. 127-134 ◽  
Author(s):  
J. C. Liu ◽  
M. D. Wu

A fuzzy logic controller (FLC) incorporating the streaming current detector (SDC) was utilized in the automatic control of the coagulation reaction. Kaolinite was used to prepare synthetic raw water, and ferric chloride was used as the coagulant. The control set point was decided at a streaming current (SC) of −0.05 and pH of 8.0 from jar tests, zeta potential and streaming current measurements. A bench-scale water treatment plant with rapid mix, flocculation, and sedimentation units, operated in a continuous-flow mode, was utilized to simulate the reaction. Two critical parameters affecting the coagulation reaction, i.e., pH and streaming current, were chosen as process outputs; while coagulant dose and base dose were chosen as control process inputs. They were on-line monitored and transduced through a FLC. With raw water of initial turbidity of 110 NTU, residual turbidity of lower than 10 NTU before filtration was obtained. Results show that this combination functions satisfactorily for coagulation control.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1686
Author(s):  
Andrey Galukhin ◽  
Roman Nosov ◽  
Ilya Nikolaev ◽  
Elena Melnikova ◽  
Daut Islamov ◽  
...  

A new rigid tricyanate ester consisting of seven conjugated aromatic units is synthesized, and its structure is confirmed by X-ray analysis. This ester undergoes thermally stimulated polymerization in a liquid state. Conventional and temperature-modulated differential scanning calorimetry techniques are employed to study the polymerization kinetics. A transition of polymerization from a kinetic- to a diffusion-controlled regime is detected. Kinetic analysis is performed by combining isoconversional and model-based computations. It demonstrates that polymerization in the kinetically controlled regime of the present monomer can be described as a quasi-single-step, auto-catalytic, process. The diffusion contribution is parameterized by the Fournier model. Kinetic analysis is complemented by characterization of thermal properties of the corresponding polymerization product by means of thermogravimetric and thermomechanical analyses. Overall, the obtained experimental results are consistent with our hypothesis about the relation between the rigidity and functionality of the cyanate ester monomer, on the one hand, and its reactivity and glass transition temperature of the corresponding polymer, on the other hand.


2000 ◽  
Vol 41 (12) ◽  
pp. 139-148 ◽  
Author(s):  
H. Vanhooren ◽  
D. Demey ◽  
I. Vannijvel ◽  
P. A. Vanrolleghem

The process characteristics of an industrial scale trickling filter plant were quantified by means of a five day intensive measurement campaign with the use of on-line respirometry and on-line off-gas analysis. Respirometry was used to measure the readily biodegradable CODst and the off-gas sensor was used to monitor the O2 and CO2 content of the off-gases. To model the biodegradation in the filters, the model developed by Rauch et al. (1999) was used. It is based on the decoupling of two basic processes in biofilm systems, substrate diffusion and biodegradation. This model was extended with equations for the production and the pH-dependent liquid-phase equilibrium for inorganic carbon (IC). The measured effluent and off-gas concentrations could be followed very closely by the calibrated model. O2 and CO2 measurements revealed that the system was not always oxygen limited. The model calibration thus required the use of a very low value of the diffusion constant for readily biodegradable substrate.


2021 ◽  
Author(s):  
Tiago DG Nunes ◽  
Magdalena W Slawinska ◽  
Heike Lindner ◽  
Michael T Raissig

Stomata are cellular pores on the leaf epidermis that allow plants to regulate carbon assimilation and water loss. Stomata integrate environmental signals to regulate pore apertures and optimize gas exchange to fluctuating conditions. Here, we quantified intraspecific plasticity of stomatal gas exchange and anatomy in response to seasonal variation in Brachypodium distachyon. Over the course of two years we (i) used infrared gas analysis to assess light response kinetics of 120 Bd21-3 wild-type individuals in an environmentally fluctuating greenhouse and (ii) microscopically determined the seasonal variability of stomatal anatomy in a subset of these plants. We observed systemic environmental effects on gas exchange measurements and remarkable intraspecific plasticity of stomatal anatomical traits. To reliably link anatomical variation to gas exchange, we adjusted anatomical gsmax calculations for grass stomatal morphology. We propose that systemic effects and variability in stomatal anatomy should be accounted for in long-term gas exchange studies.


Sign in / Sign up

Export Citation Format

Share Document