Nitrification parameter measurement for plant design: experience and experimental issues with new methods

2005 ◽  
Vol 52 (10-11) ◽  
pp. 461-468 ◽  
Author(s):  
R.M. Jones ◽  
C.M. Bye ◽  
P.L. Dold

Nitrification kinetics are important for process design, optimization, and capacity rating of activated sludge wastewater treatment plants. A Water Environment Research Foundation (WERF) project on Methods for Wastewater Characterization in Activated Sludge Modeling (WERF, 2003) focused significantly on the development of procedures for measuring the nitrifier maximum specific growth rate, μAUT. In addition, the importance of (and lack of data for) the nitrifier decay rate, bAUT, was identified. This paper describes three bench-scale methods for measuring μAUT: the Low F/M SBR, Washout and High F/M methods. During the WERF project, the importance of pH and temperature control was investigated briefly; this paper summarizes further experimental work performed to address these issues. A summary of μAUT measurements in a number of locations and using the different measurement techniques is provided.

2005 ◽  
Vol 52 (10-11) ◽  
pp. 469-477 ◽  
Author(s):  
P.L. Dold ◽  
R.M. Jones ◽  
C.M. Bye

Nitrification kinetics are important for process design, optimization and capacity rating of activated sludge wastewater treatment plants. Assessment of nitrification behaviour historically has focused on measuring the nitrifier maximum specific growth rate, μAUT. Very little attention has been directed at the importance of nitrifier organism decay rate, bAUT (also referred to as kD), and in many instances the decay rate has been assumed negligible. However, incorrect assessment of decay rate leads to errors in the μAUT estimate; the magnitude of the error depends on the μAUT measurement method employed. This paper illustrates why decay rate is important when measuring μAUT, and that the decay rate is significant. The paper also explains why measurement methods for nitrifier decay may have underestimated the decay rate. Results from an experiment incorporating improvements to previously suggested methods and data analysis are presented.


1993 ◽  
Vol 28 (10) ◽  
pp. 343-350
Author(s):  
C. E. Brade ◽  
K. Shahid

Problems associated with the design and operation of smaller activated sludge plants are discussed with respect to reactor geometry. Advances in fine bubble diffuser design and some new concepts in the process design of smaller activated sludge type plants are described. It is concluded that plant design and operation can be improved by carefully selecting reactor geometry and aeration equipment.


1999 ◽  
Vol 39 (4) ◽  
pp. 55-60 ◽  
Author(s):  
J. Alex ◽  
R. Tschepetzki ◽  
U. Jumar ◽  
F. Obenaus ◽  
K.-H. Rosenwinkel

Activated sludge models are widely used for planning and optimisation of wastewater treatment plants and on line applications are under development to support the operation of complex treatment plants. A proper model is crucial for all of these applications. The task of parameter calibration is focused in several papers and applications. An essential precondition for this task is an appropriately defined model structure, which is often given much less attention. Different model structures for a large scale treatment plant with circulation flow are discussed in this paper. A more systematic method to derive a suitable model structure is applied to this case. Results of a numerical hydraulic model are used for this purpose. The importance of these efforts are proven by a high sensitivity of the simulation results with respect to the selection of the model structure and the hydraulic conditions. Finally it is shown, that model calibration was possible only by adjusting to the hydraulic behaviour and without any changes of biological parameters.


1999 ◽  
Vol 39 (4) ◽  
pp. 45-53 ◽  
Author(s):  
H. M. van Veldhuizen ◽  
M. C. M. van Loosdrecht ◽  
F. A. Brandse

An activated sludge model for biological N- and P-removal was developed, which describes anoxic and aerobic P-uptake based on bacterial metabolism. This model was tested in practice on two wastewater treatment plants, which are BCFS®-processes, which contain activated sludge with a high fraction of denitrifying P-removing bacteria (DPB's). The model appeared to be able to give an adequate description of the performance of these treatment plants under different conditions. If the process parameters are well defined almost no calibration of the biokinetic parameters was necessary. In the simulation of Dalfsen wwtp, which has a complex control scheme, it was possible to give an adequate simulation of the control actions and the concentration profiles in a rather simple way, showing that detailed simulation of these controllers was not necessary. With the calibrated model it was possible to analyse bottlenecks and give suggestions for upgrading of the concerned treatments plants. The simulation results were used in decisions on investments.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Young Kyung Kim ◽  
Keunje Yoo ◽  
Min Sung Kim ◽  
Il Han ◽  
Minjoo Lee ◽  
...  

Abstract Bacterial communities in wastewater treatment plants (WWTPs) affect plant functionality through their role in the removal of pollutants from wastewater. Bacterial communities vary extensively based on plant operating conditions and influent characteristics. The capacity of WWTPs can also affect the bacterial community via variations in the organic or nutrient composition of the influent. Despite the importance considering capacity, the characteristics that control bacterial community assembly are largely unknown. In this study, we discovered that bacterial communities in WWTPs in Korea and Vietnam, which differ remarkably in capacity, exhibit unique structures and interactions that are governed mainly by the capacity of WWTPs. Bacterial communities were analysed using 16S rRNA gene sequencing and exhibited clear differences between the two regions, with these differences being most pronounced in activated sludge. We found that capacity contributed the most to bacterial interactions and community structure, whereas other factors had less impact. Co-occurrence network analysis showed that microorganisms from high-capacity WWTPs are more interrelated than those from low-capacity WWTPs, which corresponds to the tighter clustering of bacterial communities in Korea. These results will contribute to the understanding of bacterial community assembly in activated sludge processing.


Author(s):  
Tamara J. H. M. van Bergen ◽  
Ana B. Rios-Miguel ◽  
Tom M. Nolte ◽  
Ad M. J. Ragas ◽  
Rosalie van Zelm ◽  
...  

Abstract Pharmaceuticals find their way to the aquatic environment via wastewater treatment plants (WWTPs). Biotransformation plays an important role in mitigating environmental risks; however, a mechanistic understanding of involved processes is limited. The aim of this study was to evaluate potential relationships between first-order biotransformation rate constants (kb) of nine pharmaceuticals and initial concentration of the selected compounds, and sampling season of the used activated sludge inocula. Four-day bottle experiments were performed with activated sludge from WWTP Groesbeek (The Netherlands) of two different seasons, summer and winter, spiked with two environmentally relevant concentrations (3 and 30 nM) of pharmaceuticals. Concentrations of the compounds were measured by LC–MS/MS, microbial community composition was assessed by 16S rRNA gene amplicon sequencing, and kb values were calculated. The biodegradable pharmaceuticals were acetaminophen, metformin, metoprolol, terbutaline, and phenazone (ranked from high to low biotransformation rates). Carbamazepine, diatrizoic acid, diclofenac, and fluoxetine were not converted. Summer and winter inocula did not show significant differences in microbial community composition, but resulted in a slightly different kb for some pharmaceuticals. Likely microbial activity was responsible instead of community composition. In the same inoculum, different kb values were measured, depending on initial concentration. In general, biodegradable compounds had a higher kb when the initial concentration was higher. This demonstrates that Michealis-Menten kinetic theory has shortcomings for some pharmaceuticals at low, environmentally relevant concentrations and that the pharmaceutical concentration should be taken into account when measuring the kb in order to reliably predict the fate of pharmaceuticals in the WWTP. Key points • Biotransformation and sorption of pharmaceuticals were assessed in activated sludge. • Higher initial concentrations resulted in higher biotransformation rate constants for biodegradable pharmaceuticals. • Summer and winter inocula produced slightly different biotransformation rate constants although microbial community composition did not significantly change. Graphical abstract


Author(s):  
Hisashi Satoh ◽  
Yukari Kashimoto ◽  
Naoki Takahashi ◽  
Takashi Tsujimura

A deep learning-based two-label classifier 1 recognized a 20% morphological change in the activated flocs. Classifier-2 quantitatively recognized an abundance of filamentous bacteria in activated flocs.


2021 ◽  
Vol 11 (4) ◽  
pp. 1889 ◽  
Author(s):  
Agnieszka Micek ◽  
Krzysztof Jóźwiakowski ◽  
Michał Marzec ◽  
Agnieszka Listosz ◽  
Tadeusz Grabowski

The results of research on the efficiency and technological reliability of domestic wastewater purification in two household wastewater treatment plants (WWTPs) with activated sludge are presented in this paper. The studied facilities were located in the territory of the Roztocze National Park (Poland). The mean wastewater flow rate in the WWTPs was 1.0 and 1.6 m3/day. In 2017–2019, 20 series of analyses were done, and 40 wastewater samples were taken. On the basis of the received results, the efficiency of basic pollutant removal was determined. The technological reliability of the tested facilities was specified using the Weibull method. The average removal efficiencies for the biochemical oxygen demand in 5 days (BOD5) and chemical oxygen demand (COD) were 66–83% and 62–65%, respectively. Much lower effects were obtained for total suspended solids (TSS) and amounted to 17–48%, while the efficiency of total phosphorus (TP) and total nitrogen (TN) removal did not exceed 34%. The analyzed systems were characterized by the reliability of TSS, BOD5, and COD removal at the level of 76–96%. However, the reliability of TN and TP elimination was less than 5%. Thus, in the case of biogenic compounds, the analyzed systems did not guarantee that the quality of treated wastewater would meet the requirements of the Polish law during any period of operation. This disqualifies the discussed technological solution in terms of its wide application in protected areas and near lakes, where the requirements for nitrogen and phosphorus removal are high.


Sign in / Sign up

Export Citation Format

Share Document