Effect of phosphorus limitation on microbial floc structure and gene expression in activated sludge

2006 ◽  
Vol 54 (1) ◽  
pp. 247-255 ◽  
Author(s):  
J.R. Liu ◽  
C.T. Liu ◽  
E.A. Edwards ◽  
S.N. Liss

The effect of limiting phosphorus (P) in activated sludge was investigated in laboratory-scale sequencing batch reactors (SBRs). Correlative microscopy revealed that P-limitation (COD:N:P=100:5:0.05) leads to morphological changes in floc structure and the composition of extracellular polymeric substances (EPS). This was found to be accompanied by expression of quorum-sensing in an acyl homoserine lactone bioassay. Differential gene expression in relation to P-limitation was examined in a global profile using the Affymetrix™ Escherichia coli antisense genomic microarray. Three separate experiments were conducted where the impact of P-limitation was examined under batch conditions and in SBRs at stable operating conditions and within 3–7 days following a down-shift in P. Significant changes in open reading frames (ORF) and intergenic regions based on the E. coli microarray were observed. Several genes associated with cell structure, including slt, wbbH, fimH, amB, rfaJ and slp were found to be expressed. Quorum regulated genes were also found to be expressed including psiF which is known to be induced by P-starvation (92% confidence level; 1.45 log ratio).

2007 ◽  
Vol 55 (6) ◽  
pp. 73-79 ◽  
Author(s):  
J.R. Liu ◽  
S.N. Liss

The effect of limiting P in activated sludge was investigated in laboratory scale sequencing batch reactors (SBRs) fed effluent from a container board mill. Floc characterization included measurement of hydrophobicity, surface charge, and analysis of extracellular polymeric substances (EPS). Reactor performance was assessed by monitoring COD and inorganic P removal, MLSS, and sludge settleability (SVI and batch settling flux) over a period of eight months. Control reactors (BOD:N:P of 100:5:1) were compared to reactors run under P-limited conditions (100:5:0.3; 100:5:0.1). Reactor performance at lower temperatures (14 °C; control = 26 °C) was also studied to assess the impact of P-limitation. Changes in floc structure and the composition of EPS occurred within 1 to 3 days following a reduction in P levels. There was an insignificant increase in SVI; however, gravitational settling velocity and batch settling flux values for low P floc were consistently higher than for floc generated under control conditions. Lower temperatures (14 °C) resulted in a deterioration in floc settling properties at a BOD:N:P of 100:5:1. This impact on settling was significantly reduced at a BOD:P of 100:0.1. Reducing P concentrations in the wastewater treatment system has the potential to improve sludge settleability and reduce final P discharges.


2017 ◽  
Vol 38 (10) ◽  
pp. 1182-1187 ◽  
Author(s):  
Orla J. Cahill ◽  
Tânia Claro ◽  
Attilio A. Cafolla ◽  
Niall T. Stevens ◽  
Stephen Daniels ◽  
...  

OBJECTIVETo evaluate the efficacy of a multijet cold-plasma system and its efficacy in decontaminating 2 surfaces commonly found in hospitalsDESIGNAn in vitro study of common causes of healthcare-acquired infectionMETHODSLog10 9 cultures of methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, extended spectrum β-lactamase–producing Escherichia coli, and Acinetobacter baumannii were applied to 5-cm2 sections of stainless steel and mattress. Human serum albumin (HSA) was used as a proxy marker for organic material, and atomic force microscopy (AFM) was used to study the impact on bacterial cell structure. The inoculated surfaces were exposed to a cold-air-plasma–generating multijet prototype for 15, 20, 30, and 45 seconds.RESULTSAfter 45 seconds, at least 3 to 4 log reductions were achieved for all bacteria on the mattress, while 3 to 6 log reductions were observed on stainless steel. The presence of HSA had no appreciable effect on bacterial eradication. The surfaces with bacteria exposed to AFM showed significant morphological changes indicative of “etching” due to the action of highly charged ions produced by the plasma.CONCLUSIONThis multijet cold-plasma prototype has the potential to augment current environmental decontamination approaches but needs further evaluation in a clinical setting to confirm its effectiveness.Infect Control Hosp Epidemiol 2017;38:1182–1187


2022 ◽  
Author(s):  
Terry Van Raay ◽  
Victoria Rea ◽  
Ian Bell

Abstract Background : Small molecule metabolites produced by the microbiome are known to be neuroactive and are capable of directly impacting the brain and central nervous system, yet there is little data on the contribution of these metabolites to the earliest stages of neural development and neural gene expression. Here, we explore the impact of deriving zebrafish embryos in the absence of microbes on early neural development as well as investigate whether any potential changes can be rescued with treatment of metabolites derived from the zebrafish gut microbiota. Results : Overall, we did not observe any gross morphological changes between treatments but did observe a significant decrease in neural gene expression in embryos raised germ-free, which was rescued with the addition of zebrafish metabolites. Specifically, we identified 354 genes significantly down regulated in germ-free embryos compared to conventionally raised embryos via RNA-Seq analysis. Of these, 42 were rescued with a single treatment of zebrafish gut-derived metabolites to germ-free embryos. Gene ontology analysis revealed that these genes are involved in prominent neurodevelopmental pathways including transcriptional regulation and Wnt signalling. Consistent with the ontology analysis, we found alterations in the development of Wnt dependent events which was rescued in the germ-free embryos treated with metabolites. Conclusions : These findings demonstrate that gut-derived metabolites are in part responsible for regulating critical signalling pathways in the brain, especially during neural development.


2021 ◽  
Vol 13 (21) ◽  
pp. 12293
Author(s):  
Catarina Silva ◽  
Maria João Rosa

This paper proposes a simple and easy-to-use methodology for forecasting the impact of changes in influent chemical oxygen demand (COD) and in the emission limit values (ELVs) of COD and total nitrogen on average energy requirements for aeration and sludge production by activated sludge wastewater treatment plants (WWTPs). The methodology is based on mass balances of sludge production and oxygen requirements for carbonaceous material biodegradation and/or nitrification, oxygen transfer and aeration equipment efficiency. Using average values of historical data of regular monitoring (water quality and operating conditions) WWTP-specific equations of oxygen requirements, energy consumption and sludge production are derived as a function of influent COD and influent N-total, which may be used to quantify the impact of influent and ELV changes. The methodology was tested in five extended aeration WWTPs for three scenarios established by the utility. The results show that increasing influent COD, from 900 to 1300 mg/L, for example, significantly increases the energy consumption by 49% and sludge production by 53%. For influent 54–68 mg/L N-total, imposing 15 mgN/L ELV results in a 9–26% increase in energy consumption. The COD ELV change studied (season-specific, from 150 mg/L 12 months/year to 125 mg/L 8 months/year to 100 mg/L 4 months/year) increases the energy consumption by 1.8–2.6% and the sludge production by 4.3–5.4%.


2021 ◽  
Author(s):  
Victoria Rea ◽  
Ian Bell ◽  
Terence J Van Raay

Small molecule metabolites produced by the microbiome are known to be neuroactive and are capable of directly impacting the brain and central nervous system, yet there is little data on the contribution of these metabolites to the earliest stages of neural development and neural gene expression. Here, we explore the impact of rearing zebrafish embryos in the absence of microbes on early neural development as well as investigate whether any potential changes can be rescued with treatment of metabolites derived from the zebrafish gut microbiota. Overall, we did not observe any gross morphological changes between treatments but did observe a significant decrease in neural gene expression in embryos raised germ-free, which was rescued with the addition of zebrafish metabolites. Specifically, we identified 361 genes significantly down regulated in GF embryos compared to conventionally raised embryos via RNA-Seq analysis. Of these, 42 were rescued with the treatment of zebrafish gut-derived metabolites to GF embryos. Gene ontology analysis revealed that these genes are involved in prominent neurodevelopmental pathways including transcriptional regulation and Wnt signalling. Consistent with the ontology analysis, we found alterations in the development of Wnt dependent events which is rescued in the GF embryos treated with metabolites.


Environments ◽  
2018 ◽  
Vol 5 (8) ◽  
pp. 88 ◽  
Author(s):  
Peter Ojo ◽  
Augustine Ifelebuegu

The use of metal salts like aluminium in the precipitation of phosphorus in activated sludge plants has increased considerably in recent years due to the need to achieve tighter discharge consents for phosphorus in treated wastewater effluent. The impact of aluminium salt (Al3+) dosing on the settleability of activated sludge as a function of zone settling velocity (ZSV) and stirred specific volume index (SSVI) were investigated in batch settleability tests over a three-year period. The results showed that ZSV increased with increasing dose of aluminium salt as SSVI decreased. This trend was observed for dosing concentrations of less than 100 mg/L. At a dose concentration >100 mg/L, the trend was reversed as ZSV decreased and SSVI increased. At dose concentrations of <100 mg/L, Al3+ helped in the bioaggregation of dispersed activated sludge flocs, thereby improving settleability. The surface morphology from the scanning electron microscope (SEM) images indicated that the initial potential of interfloc bridging, open floc formation, and spindly bulking noticed in the undosed activated sludge flocs were remarkably reduced as the flocs became more compacted after Al3+ treatment. At >100 mg/L of Al3+, the sludge settleability started to disintegrate due mainly to surface charge reversal linked to the formation of aluminium hydroxides and the resultant disintegration of the activated sludge floc structure.


2013 ◽  
Vol 67 (8) ◽  
pp. 1678-1687 ◽  
Author(s):  
G. A. C. Ehlers ◽  
S. J. Turner

The capacity of activated sludge (AS) microbial populations to form dense granules offers the potential to establish efficiently settleable biomass. This has the potential to circumvent problems around ineffective solids–liquid separation and sensitivity to variable chemical oxygen demand (COD) loads. Although a number of studies have evaluated aerobic laboratory granulation reactors as high-rate treatment systems, the biological processes involved in aerobic granulation are not fully understood. Concomitantly, the impact of operation parameters such as organic loading rates is also important for granulation. The ability of a flocculating AS community to granulate under different selection pressures was evaluated in a laboratory sequencing batch reactor by determining levels of extracellular polymeric substances (EPS) and particle size fractions that developed under feast (4.74 g COD L−1) and famine (0.42 g COD L−1) nutrient regimes. The efficiency of solid–liquid separation was also measured. Aggregation indices showed levels &gt;94% and a sludge volume index factor of up to 0.94, which strongly suggested granule formation; however, microscopy evaluation showed a mixture of flocs and granules. Particle size analysis revealed binomial distribution patterns of particles in the reactor which shifted to smaller tightly bound particles (&lt;200 μm) although large particles (&gt;600 μm) were also measured during famine conditions. This coincided with increases in EPS levels although EPS quantities were low and it is postulated that this could have impacted granule formation: the EPS in the bacterial aggregates were consumed since the AS community was starved.


2016 ◽  
Vol 73 (8) ◽  
pp. 1901-1909 ◽  
Author(s):  
Weixiong Lin ◽  
Yongkang Dai ◽  
Chun Wu ◽  
Pingting Xu ◽  
Jie Ren ◽  
...  

Aniline aerofloat (DDA) is a widely used material in China and has become a main pollutant in floatation wastewater. In this study, a membrane reactor (MBR) was constructed to continuously treat simulated wastewater contaminated with DDA. The study investigated the hydraulic retention time (HRT) and the impact of influent DDA concentration on MBR performance, and analyzed intermediates from the DDA biodegradation pathway and activated sludge transfer pathway. The results showed that a 3 h HRT was an efficient and economical time period for MBR to remove 95 ± 5 mg/L DDA from the simulated wastewater; the chemical oxygen demand reduction rate was 89.9%. DDA concentration negatively impacted MBR performance. MBR performance fluctuated slightly when HRT was 3 h, dissolved oxygen ranged from 4.8 to 5.3 mg/L, pH was between 6.5 and 7.0, and DDA concentrations were at 95 ± 5 mg/L DDA. The transfer pathway in the activated sludge of DDA was through soluble microbial products, loosely bound extracellular polymeric substances, tightly bound extracellular polymeric substances, and finally cell biodegradation. DDA initially degraded to aniline; the aniline was further biodegraded to other organic compounds and was finally mineralized through the tricarboxylic acid cycle. This study offers a new continuous biological treatment technology to address DDA.


2016 ◽  
Vol 40 (1-2) ◽  
pp. 1-17 ◽  
Author(s):  
Thomas J. Corydon ◽  
Vivek Mann ◽  
Lasse Slumstrup ◽  
Sascha Kopp ◽  
Jayashree Sahana ◽  
...  

Background/Aims: Microgravity (µg) has adverse effects on the eye of humans in space. The risk of visual impairment is therefore one of the leading health concerns for NASA. The impact of µg on human adult retinal epithelium (ARPE-19) cells is unknown. Methods: In this study we investigated the influence of simulated µg (s-µg; 5 and 10 days (d)), using a Random Positioning Machine (RPM), on ARPE-19 cells. We performed phase-contrast/fluorescent microscopy, qRT-PCR, Western blotting and pathway analysis. Results: Following RPM-exposure a subset of ARPE-19 cells formed multicellular spheroids (MCS), whereas the majority of the cells remained adherent (AD). After 5d, alterations of F-actin and fibronectin were observed which reverted after 10d-exposure, suggesting a time-dependent adaptation to s-µg. Gene expression analysis of 12 genes involved in cell structure, shape, adhesion, migration, and angiogenesis suggested significant changes after a 10d-RPM-exposure. 11 genes were down-regulated in AD and MCS 10d-RPM-samples compared to 1g, whereas FLK1 was up-regulated in 5d- and 10d-RPM-MCS-samples. Similarly, TIMP1 was up-regulated in 5d-RPM-samples, whereas the remaining genes were down-regulated in 5d-RPM-samples. Western blotting revealed similar changes in VEGF, β-actin, laminin and fibronectin of 5d-RPM-samples compared to 10d, whereas different alterations of β-tubulin and vimentin were observed. The pathway analysis showed complementing effects of VEGF and integrin β-1. Conclusions: These findings clearly show that s-µg induces significant alterations in the F-actin-cytoskeleton and cytoskeleton-related proteins of ARPE-19, in addition to changes in cell growth behavior and gene expression patterns involved in cell structure, growth, shape, migration, adhesion and angiogenesis.


Sign in / Sign up

Export Citation Format

Share Document