High-rate anaerobic wastewater treatment: diversifying from end-of-the-pipe treatment to resource-oriented conversion techniques

2008 ◽  
Vol 57 (8) ◽  
pp. 1137-1148 ◽  
Author(s):  
Jules B. van Lier

Decades of developments and implementations in the field of high-rate anaerobic wastewater treatment have put the technology at a competitive level. With respect to sustainability and cost-effectiveness, anaerobic treatment has a much better score than many alternatives. Particularly, the energy conservation aspect, i.e. avoiding the loss of energy for destruction of organic matter, while energy is reclaimed from the organic waste constituents in the form of biogas, was an important driver in the development of such systems. Invoked by the present greenhouse alert, the energy involved is nowadays translated into carbon credits, providing another incentive to further implement anaerobic technology. Anaerobic conversion processes, however, offer much more than cost-effective treatment systems. Selective recovery of metals, effective desulphurization, recovery of nutrients, reductive detoxification, and anaerobic oxidation of specific compounds are examples of the potentials of anaerobic treatment. This paper presents a survey on the state of the art of full-scale anaerobic high-rate treatment of industrial wastewaters and highlights current trends in anaerobic developments.

2001 ◽  
Vol 44 (8) ◽  
pp. 15-25 ◽  
Author(s):  
J.B. van Lier ◽  
F.P. van der Zee ◽  
N.C.G. Tan ◽  
S. Rebac ◽  
R. Kleerebezem

Anaerobic wastewater treatment (AnWT) is considered as the most cost-effective solution for organically polluted industrial waste streams. Particularly the development of high-rate systems, in which hydraulic retention times are uncoupled from solids retention times, has led to a world-wide acceptance of AnWT. In the last decade up to the present, the application potentials of AnWT are further explored. Research shows the feasibility of anaerobic reactors under extreme conditions, such as low and high temperatures. Also toxic and/or recalcitrant wastewaters, that were previously believed not to be suitable for anaerobic processes, are now effectively treated. The recent advances are made possible by adapting the conventional anaerobic high-rate concept to the more extreme conditions. Staged anaerobic reactor concepts show advantages under non-optimal temperature conditions as well as during the treatment of chemical wastewater. In other situations, a staged anaerobic - aerobic approach is required for biodegradation of specific pollutants, e.g. the removal of dyes from textile processing wastewaters. The current paper illustrates the benefits of reactor staging and the yet un-exploited potentials of high-rate AnWT.


2002 ◽  
Vol 45 (10) ◽  
pp. 321-328 ◽  
Author(s):  
H.J. Gijzen

After the discovery of methane gas by Alessandro Volta in 1776, it took about 100 years before anaerobic processes for the treatment of wastewater and sludges were introduced. The development of high rate anaerobic digesters for the treatment of sewage and industrial wastewater took until the nineteen-seventies and for solid waste even till the nineteen-eighties. All digesters have in common that they apply natural anaerobic consortia of microorganisms for degradation and transformation processes. In view of this, it could be rewarding to evaluate the efficiency of natural ecosystems for their possible application. Examples of high rate anaerobic natural systems include the forestomach of ruminants and the hindgut of certain insects, such as termites and cockroaches. These “natural reactors” exhibit volumetric methane production rates as high as 35 l/l.d. The development of anaerobic reactors based on such natural anaerobic systems could produce eco-technologies for the effective management of a wide variety of solid wastes and industrial wastewater. Important limitations of anaerobic treatment of domestic sewage relate to the absence of nutrient and pathogen removal. A combination of anaerobic pre-treatment followed by photosynthetic post-treatment is proposed for the effective recovery of energy and nutrients from sewage. This eco-technology approach is based on the recognition that the main nutrient assimilating capacity is housed in photosynthetic plants. The proposed anaerobic-photosynthetic process is energy efficient, cost effective and applicable under a wide variety of rural and urban conditions. In conclusion: a natural systems approach towards waste management could generate affordable eco-technologies for effective treatment and resource recovery.


Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1546
Author(s):  
Monika Vítězová ◽  
Anna Kohoutová ◽  
Tomáš Vítěz ◽  
Nikola Hanišáková ◽  
Ivan Kushkevych

Over the past decades, anaerobic biotechnology is commonly used for treating high-strength wastewaters from different industries. This biotechnology depends on interactions and co-operation between microorganisms in the anaerobic environment where many pollutants’ transformation to energy-rich biogas occurs. Properties of wastewater vary across industries and significantly affect microbiome composition in the anaerobic reactor. Methanogenic archaea play a crucial role during anaerobic wastewater treatment. The most abundant acetoclastic methanogens in the anaerobic reactors for industrial wastewater treatment are Methanosarcina sp. and Methanotrix sp. Hydrogenotrophic representatives of methanogens presented in the anaerobic reactors are characterized by a wide species diversity. Methanoculleus sp., Methanobacterium sp. and Methanospirillum sp. prevailed in this group. This work summarizes the relation of industrial wastewater composition and methanogen microbial communities present in different reactors treating these wastewaters.


2020 ◽  
Vol 299 ◽  
pp. 122598 ◽  
Author(s):  
Heng Xu ◽  
Kaijun Wang ◽  
Xiaoqian Zhang ◽  
Hui Gong ◽  
Yu Xia ◽  
...  

Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Zehua Huang ◽  
Renren Wu ◽  
XiaoHui Yi ◽  
Hongbin Liu ◽  
Jiannan Cai ◽  
...  

The anaerobic treatment process is a complicated multivariable system that is nonlinear and time varying. Moreover, biogas production rates are an important indicator for reflecting operational performance of the anaerobic treatment system. In this work, a novel model fuzzy wavelet neural network based on the genetic algorithm (GA-FWNN) that combines the advantages of the genetic algorithm, fuzzy logic, neural network, and wavelet transform was established for prediction of effluent quality and biogas production rates in a full-scale anaerobic wastewater treatment process. Moreover, the dataset was preprocessed via a self-adapted fuzzy c-means clustering before training the network and a hybrid algorithm for acquiring the optimal parameters of the multiscale GA-FWNN for improving the network precision. The analysis results indicate that the FWNN with the optimal algorithm had a high speed of convergence and good quality of prediction, and the FWNN model was more advantageous than the traditional intelligent coupling models (NN, WNN, and FNN) in prediction accuracy and robustness. The determination coefficients R2 of the FWNN models for predicting both the effluent quality and biogas production rates were over 0.95. The proposed model can be used for analyzing both biogas (methane) production rates and effluent quality over the operational time period, which plays an important role in saving energy and eliminating pollutant discharge in the wastewater treatment system.


1986 ◽  
Vol 18 (12) ◽  
pp. 41-53 ◽  
Author(s):  
Look Hulshoff Pol ◽  
Gatze Lettinga

Presently anaerobic wastewater treatment is becoming an accepted simple technology for the treatment of a variety of wastewaters. Of the different treatment systems that have been developed the UASB process (Upflow Anaerobic Sludge Blanket) has found the widest application. Almost all of the more than 60 full scale UASB reactors in operation now, are running satisfactorily. The excellent sludge retention generally found in UASB-reactors is obtained by sludge granulation, which can be seen as a sludge immobilization process. The presently available insight into the sludge granulation process is briefly presented, together with the strategy to be applied for performing a proper first start-up and secondary start-up of UASB reactors, viz. using granular seed sludge. The effect of the presence of SS with regard to the loading potentials of anaerobic treatment systems will be discussed. The experiences obtained with some full scale applications of the UASB-process are presented.


2008 ◽  
Vol 58 (2) ◽  
pp. 379-384 ◽  
Author(s):  
D. Weichgrebe ◽  
I. Urban ◽  
K. Friedrich

The classical municipal wastewater treatment in Germany consists of an aerobic carbon and nitrogen elimination and mostly an anaerobic sludge treatment. Organic kitchen wastes from separate waste collection as well as yard wastes are converted mostly in composting plants to soil conditioner. With these conventional types of treatment, the energy potential in waste and wastewater is lost due to aerobic material conversion. In this article three scenarios for the treatment of municipal wastewater and waste are compared on the subject of energy efficiency and useable potential: Sc1. the classical wastewater treatment and the composting of the organic waste fraction, Sc2. the anaerobic treatment of wastewater combined with deammonification and the digestion of the organic waste fraction, and Sc3. a mutual anaerobic treatment of wastewater and waste as co-digestion with deammonification. The calculation of energy and CO2-balance considers different climatic conditions. In case of using anaerobic treatment, not only the energy balance will be positive, also the CO2-balance is improved by the substitution of fossil fuels with generated biogas.


1993 ◽  
Vol 27 (5) ◽  
pp. 749-756 ◽  
Author(s):  
P. Arne Alphenaar ◽  
Ron Sleyster ◽  
Peter De Reuver ◽  
Gert-Jan Ligthart ◽  
Gatze Lettinga

2019 ◽  
pp. 513-525
Author(s):  
C. B. Majumder ◽  
Anil Kr. Mathur ◽  
Vedprakash Kapse

The industrialization in the developing countries causes severe problems in collection,treatment and disposal of organic effluents. The situation leads to public health andenvironmental problem. Therefore, various high rate anaerobic treatments has beenemerged as a variable alternative for the treatment of many industrial and domesticwastewater containing organic wastes. In this study high rate Upflow Anaerobic SludgeBlanket (UASB) reactor has been critically analyzed, discussed and designed as thesolution of above problem. According to that a UASB reactor has been fabricated forlaboratory study. The UASB system appeared to be economically cost effective ascompared to other systems. This paper also focuses on the principle of startup,operational performance, chemical oxygen demand (COD) removal efficiency, methaneproduction rate, and specific methanogenic activity in the UASB reactor. In the presentstudy, reactor was started initially with mixture of molasses and glucose (50% each)solution with organic loading rate (OLR) 0.933 g COD/L day. Thereafter, OLR is beingincreased in steps. After 15 days of startup of reactor, molasses solution was applied. Thetemperature (35e° C), pH (6.8±0.4), and nutrients requirement were maintained. In thisstudy COD: N: P ratio were maintained at 300: IO: l by adding urea for nitrogen andpotassium di-hydrogen phosphate for phosphorus. For a change of OLR up to 13.33gCOD/L day, all above-mentioned parameter were studied. The removal efficiency andgas production rate depend on activity of granules. A typical organic degrading granule iscomposed of micro-colonies of Methanothrix and several syntropic micro -colonies.


2018 ◽  
Vol 77 (11) ◽  
pp. 2589-2597 ◽  
Author(s):  
Christel Kampman ◽  
Laura Piai ◽  
Hardy Temmink ◽  
Tim L. G. Hendrickx ◽  
Grietje Zeeman ◽  
...  

Abstract Chemical energy can be recovered from municipal wastewater as biogas through anaerobic treatment. Effluent from direct anaerobic wastewater treatment at low temperatures, however, still contains ammonium and considerable amounts of dissolved methane. After nitritation, methane can be used as electron donor for denitrification by the anaerobic bacterium ‘Candidatus Methylomirabilis oxyfera’. It was shown that in the presence of 0.7% O2, denitrifying methanotrophic activity slightly increased and returned to its original level after oxygen had been removed. At 1.1% O2, methane consumption rate increased 118%, nitrite consumption rate increased 58%. After removal of oxygen, methane consumption rate fully recovered, and nitrite consumption rate returned to 88%. Therefore, traces of oxygen that bacteria are likely to be exposed to in wastewater treatment are not expected to negatively affect the denitrifying methanotrophic process. 2.0% O2 inhibited denitrifying activity. Nitrite consumption rate decreased 60% and did not recover after removal of oxygen. No clear effect on methane consumption was observed. Further studies should evaluate if intermittent addition of oxygen results in increased growth rates of the slow-growing ‘Candidatus Methylomirabilis oxyfera’.


Sign in / Sign up

Export Citation Format

Share Document