Membrane bio-reactors for decentralized wastewater treatment and reuse

2008 ◽  
Vol 58 (2) ◽  
pp. 285-294 ◽  
Author(s):  
S. Meuler ◽  
S. Paris ◽  
T. Hackner

Decentralized wastewater treatment is the key to sustainable water management because it facilitates effluent (and nutrient) reuse for irrigation or as service water in households. Membrane bioreactors (MBR) can produce effluents of bathing water quality. Septic tanks can be retrofitted to MBR units. Package MBR plants for wastewater or grey water treatment are also available. Systems for decentralized treatment and reuse of domestic wastewater or grey water are also feasible for hotels, condominiums and apartment or office complexes. This paper presents the effluent qualities of different decentralized MBR applications. The high effluent quality allows infiltration even in sensitive areas or reuse for irrigation, toilet flushing and cleaning proposes in households. Due to the reusability of treated water and the possibility to design the systems for carbon reduction only, these systems can ideally and easily serve to close water and nutrient loops.

2014 ◽  
Vol 9 (2) ◽  
pp. 206-214 ◽  
Author(s):  
C. S. Tai ◽  
J. Snider-Nevin ◽  
J. Dragasevich ◽  
J. Kempson

Membrane bioreactor (MBR) package systems are providing affordable and simple-to-use decentralized wastewater treatment solutions for small to medium sized communities that face the challenge of balancing environmental and regulatory responsibilities with budgetary limitations. With a greater confidence and understanding of MBR technology, there is an increasing incentive in using MBR technology for these types of applications. Furthermore, valued qualities such as compact footprint, quick installation and start-up, process reliability, ease of operation, and superior effluent quality suitable for direct surface discharge and water reclamation have made MBR package system a preferred solution for decentralized wastewater treatment applications. This paper presents a retrofit solution for the Whitehouse Terrace Wastewater Treatment Plant. The existing extended aeration activated sludge package plant was retrofitted with a pre-engineered newterra MicroClearTM MBR package system for a small community along St Lawrence River in Brockville, Ontario. Five years full scale operation data of the MBR package system is presented and it is evident that the MBR package system consistently delivered high quality effluent that is far better than the required limit for direct surface water discharge to the St. Lawrence's river, with average effluent quality of 2.4, 2.6, 0.5, 0.05 mg/L, 1.7 counts/100 mL and 7.4 for biochemical oxygen demand, TSS, TP, TAN, Escherichia coli and pH, respectively.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1564
Author(s):  
Sara Beck ◽  
Poonyanooch Suwan ◽  
Thusitha Rathnayeke ◽  
Thi Nguyen ◽  
Victor Huanambal-Sovero ◽  
...  

Decentralized wastewater treatment systems enable wastewater to be treated at the source for cleaner discharge into the environment, protecting public health while allowing for reuse for agricultural and other purposes. This study, conducted in Thailand, investigated a decentralized wastewater treatment system incorporating a physical and photochemical process. Domestic wastewater from a university campus and conventional septic tank effluent from a small community were filtered through a woven-fiber microfiltration (WFMF) membrane as pretreatment for ultraviolet (UV) disinfection. In domestic wastewater, WFMF reduced TSS (by 79.8%), turbidity (76.5%), COD (38.5%), and NO3 (41.4%), meeting Thailand irrigation standards for every parameter except BOD. In septic tank effluent, it did not meet Thailand irrigation standards, but reduced TSS (by 77.9%), COD (37.6%), and TKN (13.5%). Bacteria (total coliform and Escherichia coli) and viruses (MS2 bacteriophage) passing through the membrane were disinfected by flow-through UV reactors containing either a low-pressure mercury lamp or light-emitting diodes (LEDs) emitting an average peak wavelength of 276 nm. Despite challenging and variable water quality conditions (2% < UVT < 88%), disinfection was predictable across water types and flow rates for both UV sources using combined variable modeling, which enabled us to estimate log inactivation of other microorganisms. Following UV disinfection, wastewater quality met the WHO standards for unrestricted irrigation.


2010 ◽  
Vol 5 (4) ◽  
Author(s):  
X.M. Yang ◽  
A. Morita ◽  
I. Nakano ◽  
Y. Kushida ◽  
H. Ogawa

In Japan, night soil, or black water, was formerly used as fertilizer for agriculture. However, during the rapid economic growth that took place after 1960, chemical fertilizers began to be adopted for agriculture and night soil was almost abandoned. How to treat the excess of night soil then became a big challenge to tackle. From that time a variety of night soil treatment technologies have been developed and the Japanese government has actively promoted the construction of night soil treatment facilities all over the country. As measures for domestic wastewater treatment, sewerage systems were spread in high-density urban areas, while a decentralized system called johkasou was diffused in rural areas with low population density. Johkasou is a unique system that was devised in Japan and mainly treats domestic wastewater on-site. Night soil treatment systems and decentralized wastewater treatment systems used in Japan are introduced in this paper, in the hope that the experience acquired in Japan will contribute to improve the sanitation conditions in other countries.


Author(s):  
Badrus Zaman ◽  
Wiharyanto Oktiawan

Most community settlements in Indonesia do not have a household scale of a wastewater treatment plant. Fatal impacts on the environment and human health can occur at any time, including (a) causing environmental damage (disaster), (b) damaging beauty/aesthetics for the scenery will be unpleasant and foul-smelling, (c) polluting water bodies, and (d ) endangering health. The purpose of this study is to optimize the Multi Soil Layering (MSL) System to treat domestic wastewater (greywater) using environmentally friendly materials that are available in Indonesia. The research method used the MSL system with the first variation using a batch system with Hydraulic retention time (HRT) for 24 hours and the second variation using an intermittent system with 3, 6, 9 hours HRT. The results showed that the MSL system was able to eliminate COD well. The highest COD removal efficiency was 93.44% at 9 hours HRT, but the effluent quality did not meet the required quality standards. The development of MSL systems that produces an effluent quality that meets the quality standards needs to be studied further.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
H. T. Le ◽  
N. Jantarat ◽  
W. Khanitchaidecha ◽  
K. Ratananikom ◽  
A. Nakaruk

This research focused on the ammonium-nitrogen (NH4-N) removal from the domestic wastewater using the attached growth reactors. Two types of waste material of corncob (biodegradable material) and concrete (nonbiodegradable material) were used as the carrier for microorganisms’ attachment. During operation, both reactors achieved absolutely high performance of ammonium removal (up to 99%) and total nitrogen removal (up to 95%). The significant advantage of corncob carrier was that the corncob was able to be a source of carbon for biological denitrification, leading to no external carbon requirement for operating the system. However, the corncob caused an increasing turbidity of the effluent. On the other hand, the concrete carrier required the minimal external carbon of 3.5 C/N ratio to reach the good performance. Moreover, a longer period for microorganisms’ adaptation was found in the concrete carrier rather than the corncob carrier. Further, the same physiological and biochemical characteristics of active bacteria were found at the two carriers, which were negative gram, cocci shape, and smooth and white-turbid colony. Due to the effluent quality, the concrete was more appropriate carrier than the corncob for wastewater treatment.


2021 ◽  
Vol 13 (3) ◽  
pp. 1363
Author(s):  
Jingsi Xiao ◽  
Ulrike Alewell ◽  
Ingo Bruch ◽  
Heidrun Steinmetz

Global trends such as climate change and the scarcity of sustainable raw materials require adaptive, more flexible and resource-saving wastewater infrastructures for rural areas. Since 2018, in the community Reinighof, an isolated site in the countryside of Rhineland Palatinate (Germany), an autarkic, decentralized wastewater treatment and phosphorus recovery concept has been developed, implemented and tested. While feces are composted, an easy-to-operate system for producing struvite as a mineral fertilizer was developed and installed to recover phosphorus from urine. The nitrogen-containing supernatant of this process stage is treated in a special soil filter and afterwards discharged to a constructed wetland for grey water treatment, followed by an evaporation pond. To recover more than 90% of the phosphorus contained in the urine, the influence of the magnesium source, the dosing strategy, the molar ratio of Mg:P and the reaction and sedimentation time were investigated. The results show that, with a long reaction time of 1.5 h and a molar ratio of Mg:P above 1.3, constraints concerning magnesium source can be overcome and a stable process can be achieved even under varying boundary conditions. Within the special soil filter, the high ammonium nitrogen concentrations of over 3000 mg/L in the supernatant of the struvite reactor were considerably reduced. In the effluent of the following constructed wetland for grey water treatment, the ammonium-nitrogen concentrations were below 1 mg/L. This resource efficient decentralized wastewater treatment is self-sufficient, produces valuable fertilizer and does not need a centralized wastewater system as back up. It has high potential to be transferred to other rural communities.


Author(s):  
Marcella Moretti Ferreira ◽  
Fabiana Alves Fiore ◽  
Alexandre Saron ◽  
Gustavo Henrique Ribeiro da Silva

Abstract A DEWATS (decentralized wastewater treatment system) is an alternative for expanding sanitation. In Brazil, DEWATS is acknowledged by law and is part of the National Sanitation Plan strategy for achieving the treatment of 85.6% of all the generated wastewater by 2033, improving the current treatment index of 49%. This review's aim is to identify DEWATS studies in Brazil and to verify their potential for narrowing the national wastewater treatment deficit. Hence, aspects such as cost, maintenance, and efficiency were assessed. The archival research method (ARM) was used to identify papers published in the last 20 years through the scientific databases of Scopus, Science Direct, and Web of Science. Data regarding the general characteristics of each study were collected and compared to Brazilian environmental regulation and sanitation status. The results showed the evaluation of different technologies as DEWATS, highlighting their flexibility and potential use in 79% of Brazilian counties. However, although 81% of the studies conducted performance analysis, none covered the main parameters required by Brazilian law. Although legal gaps for DEWATS improvement and consolidation have been identified and the interest in studying DEWATS has been increasing in the last five years, many barriers to their widespread use remain.


2013 ◽  
Vol 684 ◽  
pp. 230-233 ◽  
Author(s):  
Young Ho Ahn

This paper provides feasibility estimation for actual domestic wastewater treatment under assumptions of a flow of 10,000 m3/d (about 40,000 capita), when air cathode MFCs configurations were adopted. Temperature-phased (mesophilic-ambient) process configurations in which can achieve either better effluent quality (i.e. maximizing treatment) or high energy recoveries is schematized. The performance used in the mass balance analysis of the treatment process conducted here compared with typical values in conventional biological wastewater treatment. Various advantages of using MFCs for wastewater treatment, including energy saving, less sludge production (and perhaps the lack of a need for a secondary clarifier), and no need for sludge handling, etc., were also addressed.


Sign in / Sign up

Export Citation Format

Share Document