Getting ready for climate change implications for the western USA

2008 ◽  
Vol 58 (3) ◽  
pp. 727-733
Author(s):  
P. Standish-Lee ◽  
K. Lecina

Water users throughout the western United States have faced supply problems from the conception of modern civilization. Today, climate change, population growth, and declining water quality combine with the age-old problem of finding sufficient water resources in a region with a largely arid climate. Climate change in particular poses a significant threat to the sustainability of water supplies in the western United States (the West). Casting aside all debate about who and what is responsible for climate change, the public and water utilities alike must be prepared to address its effects on water supplies.

Hydrology ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 49
Author(s):  
Madeline A. Grupper ◽  
Madeline E. Schreiber ◽  
Michael G. Sorice

Provision of safe drinking water by water utilities is challenged by disturbances to water quality that have become increasingly frequent due to global changes and anthropogenic impacts. Many water utilities are turning to adaptable and flexible strategies to allow for resilient management of drinking water supplies. The success of resilience-based management depends on, and is enabled by, positive relationships with the public. To understand how relationships between managers and communities spill over to in-home drinking water behavior, we examined the role of trust, risk perceptions, salience of drinking water, and water quality evaluations in the choice of in-home drinking water sources for a population in Roanoke Virginia. Using survey data, our study characterized patterns of in-home drinking water behavior and explored related perceptions to determine if residents’ perceptions of their water and the municipal water utility could be intuited from this behavior. We characterized drinking water behavior using a hierarchical cluster analysis and highlighted the importance of studying a range of drinking water patterns. Through analyses of variance, we found that people who drink more tap water have higher trust in their water managers, evaluate water quality more favorably, have lower risk perceptions, and pay less attention to changes in their tap water. Utility managers may gauge information about aspects of their relationships with communities by examining drinking water behavior, which can be used to inform their future interactions with the public, with the goal of increasing resilience and adaptability to external water supply threats.


2014 ◽  
Vol 53 (6) ◽  
pp. 1578-1592 ◽  
Author(s):  
Nina S. Oakley ◽  
Kelly T. Redmond

AbstractThe northeastern Pacific Ocean is a preferential location for the formation of closed low pressure systems. These slow-moving, quasi-barotropic systems influence vertical stability and sustain a moist environment, giving them the potential to produce or affect sustained precipitation episodes along the west coast of the United States. They can remain motionless or change direction and speed more than once and thus often pose difficult forecast challenges. This study creates an objective climatological description of 500-hPa closed lows to assess their impacts on precipitation in the western United States and to explore interannual variability and preferred tracks. Geopotential height at 500 hPa from the NCEP–NCAR global reanalysis dataset was used at 6-h and 2.5° × 2.5° resolution for the period 1948–2011. Closed lows displayed seasonality and preferential durations. Time series for seasonal and annual event counts were found to exhibit strong interannual variability. Composites of the tracks of landfalling closed lows revealed preferential tracks as the features move inland over the western United States. Correlations of seasonal event totals for closed lows with ENSO indices, the Pacific decadal oscillation (PDO), and the Pacific–North American (PNA) pattern suggested an above-average number of events during the warm phase of ENSO and positive PDO and PNA phases. Precipitation at 30 U.S. Cooperative Observer stations was attributed to closed-low events, suggesting 20%–60% of annual precipitation along the West Coast may be associated with closed lows.


2014 ◽  
Vol 11 (5) ◽  
pp. 4695-4727
Author(s):  
T. K. Lissner ◽  
C. A. Sullivan ◽  
D. E. Reusser ◽  
J. P. Kropp

Abstract. Water is an essential input to the majority of human activities. Often, access to sufficient water resources is limited by quality and infrastructure aspects, rather than by resource availability alone, and each activity has different requirements regarding the nature of these aspects. This paper develops an integrated approach to assess the adequacy of water resources for the three major water users, the domestic, agricultural and industrial sectors. Additionally, we include environmental water requirements. We first outline the main determinants of water adequacy for each sector. Subsequently, we present an integrated approach using fuzzy logic, with allows assessing sector-specific as well as overall water adequacy. We implement the approach in two case study settings to exemplify the main features of the approach. Using results from two climate models and two forcing RCPs (Representative Concentration Pathways) as well as population projections, we further assess the impacts of climate change and population growth on the adequacy of water resources. The results provide an important step forward in determining the most relevant factors, impeding adequate access to water, which remains an important challenge in many regions of the world. The methodology allows to directly identify those factors most decisive in determining the adequacy of water in each region, pointing towards the most efficient intervention points to improve conditions. Our findings underline the fact that in addition to water volumes, water quality is a limitation for all sectors and especially for the environmental sector, high levels of pollution are a threat to water adequacy.


2005 ◽  
Vol 39 (1) ◽  
pp. 131
Author(s):  
Melanie Gustafson ◽  
Rebecca J. Mead

1993 ◽  
Vol 83 (4) ◽  
pp. 1064-1080 ◽  
Author(s):  
G. A. Bollinger ◽  
M. C. Chapman ◽  
M. S. Sibol

Abstract This study investigates the relationship between earthquake magnitude and the size of damage areas in the eastern and western United States. To quantify damage area as a function of moment magnitude (M), 149 MMI VI and VII areas for 109 earthquakes (88 in the western United States, 21 in the eastern United States and Canada) were measured. Regression of isoseismal areas versus M indicated that areas in the East were larger than those in the West, at both intensity levels, by an average 5 × in the M 4.5 to 7.5 range. In terms of radii for circles of equivalent area, these results indicate that damaging ground motion from shocks of the same magnitude extend 2 × the epicentral distance in eastern North America compared to the West. To determine source and site parameters consistent with the above results, response spectral levels for eastern North America were stochastically simulated and compared with response spectral ordinates derived from recorded strong ground motion data in the western United States. Stress-drop values of 200 bars, combined with a surficial 2-km-thick low velocity “sedimentary” layer over rock basement, produced results that are compatible with the intensity observations, i.e., similar response spectral levels in the east at approximately twice their epicentral distance in the western U.S. distance. These results suggest that ground motion modeling in eastern North America may need to incorporate source and site parameters different from those presently in general use. The results are also of importance to eastern U.S. hazard assessments as they require allowance for the larger damage areas in preparedness and mitigation programs.


Author(s):  
K. Bruce Jones ◽  
Daniel T. Heggem ◽  
Timothy G. Wade ◽  
Anne C. Neale ◽  
Donald W. Ebert ◽  
...  

Paper Trails ◽  
2021 ◽  
pp. 75-93
Author(s):  
Cameron Blevins

Chapter 4 examines the transportation of mail in the western United States. During the 1860s and 1870s the Post Office Department contracted with private stagecoach companies to carry the mail on its behalf, allowing it to extend mail routes across the region without establishing its own costly public infrastructure. Government mail contracts effectively subsidized the western stagecoach industry and facilitated the region’s breakneck growth during these decades. But staging companies began to lobby, collude, and bribe their way into exorbitant contracts worth millions of dollars, and by the end of the 1870s the situation had devolved into a full-fledged institutional crisis. This chapter is a story about mismanagement, fraud, and corruption, but it also speaks to the federal government’s lack of centralized administrative capacity. The decentralized agency model may have allowed the US Post to rapidly spread across the West, but this frenetic regional expansion project came with considerable costs.


Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 115 ◽  
Author(s):  
Roxelane Cakir ◽  
Mélanie Raimonet ◽  
Sabine Sauvage ◽  
Javier Paredes-Arquiola ◽  
Youen Grusson ◽  
...  

Modeling is a useful way to understand human and climate change impacts on the water resources of agricultural watersheds. Calibration and validation methodologies are crucial in forecasting assessments. This study explores the best calibration methodology depending on the level of hydrological alteration due to human-derived stressors. The Soil and Water Assessment Tool (SWAT) model is used to evaluate hydrology in South-West Europe in a context of intensive agriculture and water scarcity. The Index of Hydrological Alteration (IHA) is calculated using discharge observation data. A comparison of two SWAT calibration methodologies are done; a conventional calibration (CC) based on recorded in-stream water quality and quantity and an additional calibration (AC) adding crop managements practices. Even if the water quality and quantity trends are similar between CC and AC, water balance, irrigation and crop yields are different. In the context of rainfall decrease, water yield decreases in both CC and AC, while crop productions present opposite trends (+33% in CC and −31% in AC). Hydrological performance between CC and AC is correlated to IHA: When the level of IHA is under 80%, AC methodology is necessary. The combination of both calibrations appears essential to better constrain the model and to forecast the impact of climate change or anthropogenic influences on water resources.


2005 ◽  
Vol 52 (9) ◽  
pp. 235-242
Author(s):  
J.G. Schulte ◽  
A.H. Vicory

Source water quality is of major concern to all drinking water utilities. The accidental introduction of contaminants to their source water is a constant threat to utilities withdrawing water from navigable or industrialized rivers. The events of 11 September, 2001 in the United States have heightened concern for drinking water utility security as their source water and finished water may be targets for terrorist acts. Efforts are underway in several parts of the United States to strengthen early warning capabilities. This paper will focus on those efforts in the Ohio River Valley Basin.


Sign in / Sign up

Export Citation Format

Share Document