Arsenic mass balance in a paper mill and impact of the arsenic release from the WWTP effluent on the Moselle River

2011 ◽  
Vol 63 (7) ◽  
pp. 1349-1356 ◽  
Author(s):  
C. Michon ◽  
M.-N. Pons ◽  
P. Bauda ◽  
H. Poirot ◽  
O. Potier

Rivers used for drinking water production might be subject to anthropogenic pollution discharge upstream of the intake point. This problem was investigated in the case of the Moselle River, used for water production in Nancy (350,000 inhabitants) and which might be impacted by industrial activities 60 km upstream. The arsenic flux of a pulp and paper mill discharging in the Moselle River at this location has been more specifically investigated. The main sources of arsenic in that mill seemed to be the recovered papers and the gravel pit water used as feed water. The arsenic input related to wood and bark was limited. The main arsenic outputs from the plant were the paper produced on site and the deinking sludge. The arsenic concentration in the effluent of the wastewater treatment plant (WWTP) was not correlated to the one in the gravel pit water, but may depend on the operating conditions of the WWTP or the changes in processes of the mill. The impact of this anthropogenic source of arsenic on the Moselle River was slightly larger in summer, when the flowrate was lower. Globally the impact of the paper mill on the Moselle River water quality was limited in terms of arsenic.

2021 ◽  
Author(s):  
Pierre Pedenaud ◽  
Marianna Rondon ◽  
Nicolas Lesage ◽  
Eric Tournis ◽  
Riccardo Giolo ◽  
...  

Abstract A new seawater laboratory pilot has been installed in order to evaluate the impact of the seawater quality on the performance of nanofiltration membranes and filters. The test program implemented was designed to produce the data required to optimize the design and operating parameters of a subsea sulfate removal plant, particularly with respect to the technology developed by Total, Saipem and Veolia, co-owners of the development. The equipment qualification plan is approaching completion with the development of subsea barrier-fluidless pumps, all-electric control systems, high-cycling valves operated by electric actuators and subsea water analyzers. This presented pilot laboratory study completes this plan. Nanofiltration membranes are commonly used to remove the sulfates found in seawater before the water is injected into wells. The principal advantages of relocating this equipment from topside to subsea are better reservoir sweep control, a substantial subsea water injection network reduction and savings on space and weight on the topsides deck. The move to subsea offers the opportunity to simplify the process due to improved deep water quality. This was previously demonstrated through a subsea test campaign. This new pilot study provides data both on the performance of a plant operating with different feed water quality and on the success of operating changes to further optimize the plant performance. The pilot has been installed at the Palavas-les-Flots site in France. Raw water collected from the basin was mixed with ultra-filtered water in order to calibrate the feed water quality. The pilot includes a two stage nanofiltration configuration and single stage nanofiltration unit. The two stage configuration was used to produce data for operation across an array of feed water quality and plant operating conditions. The single stage unit was used to produce data on membrane fouling over a long operating duration. Results from these tests and discussion on how this data relates to subsea plant performance shall be presented. This innovative approach enables a wide range of subsea water quality to be simulated and tested against different process configurations of the subsea unit. Indeed, for each industrial subsea application, the raw seawater quality is dependent on both the region and the depth of the seawater inlet. With this experimental data acquisition campaign and understanding of the seawater quality at inlet, the system design can be tailor-made for each future application case.


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1965 ◽  
Author(s):  
Skoczko ◽  
Szatyłowicz

The aim of the study was the assessment of corrosivity and aggressiveness for boiler feed water. The negative effects of water corrosivity and aggressiveness may include silting up of the steel water supply system and the destruction of boiler equipment touched or washed by such water. They may cause the whole industrial production system to fail or be destroyed. That is why it was important to reach a high water purification level, including the calculation of water aggressiveness and corrosivity indicators. The carried out test showed that the simple system used before the modernization of the industrial water treatment plant is not sufficient to reach clean and stable water. The authors proposed modernization, including additional processes to improve boiler water quality, and designed new devices for water treatment. As a result of the new idea, groundwater taken as raw water was treated in individual and complex processes, such as pre-aeration, filtration, ion exchange (cation and anion exchange resigns), extra aeration, and extra degassing. The conducted research included chemical analyses of raw and treated water. In the conducted studies, the indirect method of water aggressiveness and corrosivity assessment was applied using mathematical calculation of the Langelier Saturation Index (LSI), the Ryznar Stability Index (RI), the Larson–Skold Index (LI), and the Singley Index (SI). The results proved that the new proposed processes for the boiler feed water treatment station allow reaching a high water quality and low level of water aggressiveness and corrosion.


2012 ◽  
Vol 7 (2) ◽  
Author(s):  
Christopher C. Boyd ◽  
Steven J. Duranceau

A pilot test program was conducted to evaluate methods for maintaining the productivity of a hollow fiber ultrafiltration membrane operating at constant flux values of 49.2 and 62.3 gallons/ft2-day. The ultrafiltration pilot filtered settled water from a conventional surface water treatment plant in Florida. The testing assessed the impact of different chemical maintenance protocols on UF membrane performance. Seasonal variations in water quality necessitated changes in the type and combination of cleaning agents used to maintain membrane performance. Sodium hypochlorite, citric acid and sodium hydroxide were used during pilot testing as the fouling characteristics of the water changed with time. Pilot results were used to develop alternative chemically enhanced backwash strategies that varied with seasonally-impacted changes in feed water quality. Citric acid, with a target pH of <3, was found to be effective in August and September; whereas, a combination of citric acid and high pH sodium hydroxide chemically enhanced backwashes successfully maintained performance between November, 2010 and May, 2011.


2001 ◽  
Vol 43 (10) ◽  
pp. 241-248 ◽  
Author(s):  
J. H. Roorda ◽  
J. H.J.M. van der Graaf

Abstract Variations in water quality of waste water treatment plant (WWTP) effluent complicate ultrafiltration of this feed water. Traditional parameters do not provide sufficient information to explain the fouling of membranes during ultrafiltration of WWTP effluent. New parameters for measuring and monitoring the fouling potential of feed water for ultrafiltration membranes need to be developed. The normalised membrane fouling index for ultrafiltration membranes (MFI-UFn) can be used as such and is according to the cake filtration theory calculated from the ratio of filtration time and filtration volume as a function of the filtration volume. MFI-UFn can be calculated from both experiments with constant Trans Membrane Pressure (TMP) and from experiments with constant flux. This parameter can also be calculated independent of the scale of the experiment. Results show that differences in fouling potential can be measured for various feed waters using the same membrane type and for various membrane types using the same feed water. Variation in feed water quality leads to a deviation of the MFI-UFn, as was found especially for WWTP effluent. The applied TMP influences the value of the MFI-UFn, indicating cake compression when applying a higher TMP. MFI-UFn can be used to identify the effect of pre-treatment methods, which is useful when using WWTP effluent as feed water for an ultrafiltration processes.


2018 ◽  
pp. 9-13 ◽  
Author(s):  
A. G. Nikulenkov ◽  
D. V. Samoilenko ◽  
T. V. Nikulenkova

Today, objective preconditions have been formed to find the ways on how to increase cost-effectiveness of NPPs operation, while providing the required safety level. One of such ways to increase thermal nominal power of power unit. The paper provides for the results of reactor behavior analysis at increased thermal power above nominal received using a one-dimensional system computer code RELAP5/MOD3.2 and relevant model of VVER-1000 (V-320) power unit. Calculation analyses are performed for quasi-static reactor operating conditions and transients using realistic approach in terms of initial performance parameters of reactor installation. In researches, representative initial events for transients have been selected according to the principle described further. For an abnormal operation, an event has been selected based on its high frequency and consequences, which require decreasing reactor power down to 50 % of nominal thermal power. For emergency conditions an event has been selected which is caused by external extreme impacts typical for Ukrainian NPP sites resulting in the worst consequences. Thus, the transients are represented by events associated with failure of a single turbine-driven feed water pump and total station blackout unit. To analyze emergency conditions caused by long-term blackout, they were additionally accompanied by a leakage through reactor coolant pump seals. Given that increase of steam flow in a turbine at increased thermal power above nominal requires additional studies on residual service life assessment of its critical components, a 3-D model of high-pressure rotor of a full speed turbine is proposed for further studies. Based on the calculations a comparative analysis of major parameters of the reactor at rated and increased thermal power is performed with assessment of significant factors to be considered in further studies on increase of installed thermal output of NPP unit.


Processes ◽  
2018 ◽  
Vol 6 (9) ◽  
pp. 163 ◽  
Author(s):  
Mohammed Alghamdi ◽  
Faissal Abdel-Hady ◽  
A. Mazher ◽  
Abdulrahim Alzahrani

Solar energy is becoming a promising source of heat and power for electrical generation and desalination plants. In this work, an integrated study of modeling, optimization, and experimental work is undertaken for a parabolic trough concentrator combined with a humidification and dehumidification desalination unit. The objective is to study the design performance and economic feasibility of a solar-driven desalination system. The design involves the circulation of a closed loop of synthetic blend motor oil in the concentrators and the desalination unit heat input section. The air circulation in the humidification and dehumidification unit operates in a closed loop, where the circulating water runs during the daytime and requires only makeup feed water to maintain the humidifier water level. Energy losses are reduced by minimizing the waste of treated streams. The process is environmentally friendly, since no significant chemical treatment is required. Design, construction, and operation are performed, and the system is analyzed at different circulating oil and air flow rates to obtain the optimum operating conditions. A case study in Saudi Arabia is carried out. The study reveals unit capability of producing 24.31 kg/day at a circulating air rate of 0.0631 kg/s and oil circulation rate of 0.0983 kg/s. The tradeoff between productivity, gain output ratio, and production cost revealed a unit cost of 12.54 US$/m3. The impact of the circulating water temperature has been tracked and shown to positively influence the process productivity. At a high productivity rate, the humidifier efficiency was found to be 69.1%, and the thermal efficiency was determined to be 82.94%. The efficiency of the parabolic trough collectors improved with the closed loop oil circulation, and the highest performance was achieved from noon until 14:00 p.m.


2020 ◽  
Author(s):  
Kees Theo Huisman ◽  
Bastiaan Blankert ◽  
Szilard Bucs ◽  
Johannes S. Vrouwenvelder

<p><strong>Abstract</strong></p> <p>The growth of biofilms, causing biofouling on the membrane and feed spacer surface, is an unavoidable phenomenon in reverse osmosis. Biofouling can lead to unacceptable losses in product quality and quantity, and membrane lifetime. Process conditions such as crossflow velocity and nutrient concentration in the feed water strongly affect the development of biofilms. To improve system performance, understanding the relation between process conditions, biofilm development, and system performance is key. Optical coherence tomography (OCT), is increasingly applied to characterize biofilm structure in-situ and non-destructively. In OCT, near-infrared light is used to capture 2D and 3D images from within optical scattering media. In spacer filled channels with representative biodegradable nutrient conditions in the feed, biofilms often develop heterogeneously and dispersed. In such systems, commonly used structural parameters such as average thickness, average roughness, and average porosity may not be reflected in the system performance.</p> <p>In this study, biofilm structural and spatial parameters are explored with the objective to link biofouling in spacer filled channels to system performance indicators. For this purpose, biofilms are grown in membrane fouling simulators at different nutrient concentrations and flow rates. Biofilm development on the feed spacer and on the membrane and system performance (pressure drop, transmembrane pressure, rejection) are monitored. Understanding the impact of (i) feed water quality and flow rate on biofilm growth and of (ii) biofilm structure and spatial distribution on system performance will lead to the development of more effective strategies for biofouling control.</p> <p><strong>Keywords</strong></p> <p>Biofouling; desalination; drinking water production; reverse osmosis; optical coherence tomography; feed spacer; biofilm structure</p>


2009 ◽  
Vol 4 (1) ◽  
Author(s):  
Jean-Martin Brault ◽  
Edouard Kouakou ◽  
Virginie Chambost ◽  
Paul Stuart

The potential impacts of additional flow and organic loads resulting from the production of cellulosic ethanol on an existing integrated newsprint mill were simulated in this paper. It was found that depending on the ethanol production rate and the existing spare capacity for additional biochemical oxygen demand (BOD), treatment plant modifications may be required. In terms of operating costs, it was found that nutrients use could increase by 50% to 150%, while aeration flow could increase by 5% to 140% depending on the desired level of dissolved oxygen in the aeration basin. Significant increases in polymer use for mixed sludge dewatering could result due to additional biosolids production. Additional capital costs for air blowers could also be necessary unless the mill has existing spare capacity. It was also found that ethanol recovery efficiency and production rate had little impact on BOD removal up to a certain ethanol production level, and that the impact on operating costs decreased with increasing recovery.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Saeed Dehghani ◽  
Farzaneh Mahmoudi ◽  
Abhijit Date ◽  
Aliakbar Akbarzadeh

Abstract Humidification–dehumidification (HDH) desalination with direct contact dehumidifier system is designed and fabricated. Experimental tests are performed under various operating conditions in order to explore the influence of temperatures and mass flow rates of seawater and freshwater on system performance by utilizing non-dimensional parameters. It is shown that, for any case, there is an optimum flow rate ratio of water to air, which results in a maximum water production rate. A mathematical model is utilized to evaluate the system performance and compare the outcomes with the experimental results. In addition, the effect of feed water salinity from 0–30% on the water production rate is experimentally investigated. The results showed that the maximum achieved recovery ratio of the proposed HDH system is 5% under the working condition of seawater temperature at 73 °C with 3% salinity and cold freshwater at 28 °C. Furthermore, the system was able to produce water at nearly saturated seawater feed.


Sign in / Sign up

Export Citation Format

Share Document