Chemical monitoring strategy for the assessment of advanced water treatment plant performance

2011 ◽  
Vol 63 (3) ◽  
pp. 573-579 ◽  
Author(s):  
J. E. Drewes ◽  
J. A. McDonald ◽  
T. Trinh ◽  
M. V. Storey ◽  
S. J. Khan

A pilot-scale plant was employed to validate the performance of a proposed full-scale advanced water treatment plant (AWTP) in Sydney, Australia. The primary aim of this study was to develop a chemical monitoring program that can demonstrate proper plant operation resulting in the removal of priority chemical constituents in the product water. The feed water quality to the pilot plant was tertiary-treated effluent from a wastewater treatment plant. The unit processes of the AWTP were comprised of an integrated membrane system (ultrafiltration, reverse osmosis) followed by final chlorination generating a water quality that does not present a source of human or environmental health concern. The chemical monitoring program was undertaken over 6 weeks during pilot plant operation and involved the quantitative analysis of pharmaceuticals and personal care products, steroidal hormones, industrial chemicals, pesticides, N-nitrosamines and halomethanes. The first phase consisted of baseline monitoring of target compounds to quantify influent concentrations in feed waters to the plant. This was followed by a period of validation monitoring utilising indicator chemicals and surrogate measures suitable to assess proper process performance at various stages of the AWTP. This effort was supported by challenge testing experiments to further validate removal of a series of indicator chemicals by reverse osmosis. This pilot-scale study demonstrated a simplified analytical approach that can be employed to assure proper operation of advanced water treatment processes and the absence of trace organic chemicals.

2010 ◽  
Vol 10 (6) ◽  
pp. 961-968 ◽  
Author(s):  
J. E. Drewes ◽  
J. A. McDonald ◽  
T. Trinh ◽  
M. V. Storey ◽  
S. J. Khan

A pilot-scale plant was employed to validate the performance of a proposed full-scale advanced water treatment plant (AWTP) in Sydney, Australia. The primary aim of this study was to develop a chemical monitoring program that can demonstrate proper plant operation resulting in the removal of priority chemical constituents in the product water. The feed water quality to the pilot plant was tertiary-treated effluent from a wastewater treatment plant. The unit processes of the AWTP were comprised of an integrated membrane system (ultrafiltration, reverse osmosis) followed by final chlorination generating a water quality that does not present a source of human or environmental health concern. The chemical monitoring program was undertaken over 6 weeks during pilot plant operation and involved the quantitative analysis of pharmaceuticals and personal care products, steroidal hormones, industrial chemicals, pesticides, N-nitrosamines and halomethanes. The first phase consisted of baseline monitoring of target compounds to quantify influent concentrations in feed waters to the plant. This was followed by a period of validation monitoring utilising indicator chemicals and surrogate measures suitable to assess proper process performance at various stages of the AWTP. This effort was supported by challenge testing experiments to further validate removal of a series of indicator chemicals by reverse osmosis. This pilot-scale study demonstrated a simplified analytical approach that can be employed to assure proper operation of advanced water treatment processes and the absence of trace organic chemicals.


2015 ◽  
Vol 46 (4) ◽  
pp. 291-335 ◽  
Author(s):  
M. Pivokonsky ◽  
J. Naceradska ◽  
I. Kopecka ◽  
M. Baresova ◽  
B. Jefferson ◽  
...  

2015 ◽  
Vol 16 (2) ◽  
pp. 438-444 ◽  
Author(s):  
Chun Ming Chew ◽  
M. K. Aroua ◽  
M. A. Hussain

Industrial-scale ultrafiltration (UF) membrane systems have gained wide acceptance for producing safe drinking water. Laboratory and pilot plant studies are often carried out prior to the design of full-scale water treatment plants. Emphases are laid on how accurately these laboratory and pilot plant studies represent actual industrial-scale systems and the limitations. A case study which encompasses laboratory experiments, pilot plant and industrial-scale UF systems has been carried out in Malaysia using the same type of modified polyethersulfone hollow fiber UF membrane and surface raw water source. This research elaborates on the practical utilization of laboratory experiments and pilot plant results on the design and scale-up for industrial-scale water treatment plants. The results obtained in filtrate quality, transmembrane pressure and specific electricity requirements elucidate that both laboratory- and pilot-scale studies are essential to determine the detailed design criteria of an industrial-scale UF membrane water treatment plant with limitations that require attention. Design engineers are able to reduce the safety factor allowance and minimize cost by utilizing laboratory- and pilot-scale results for the scale-up of UF membrane water treatment plants.


2002 ◽  
Vol 2 (5-6) ◽  
pp. 193-199
Author(s):  
M.J. Yu ◽  
H.M. Cho ◽  
J.Y. Koo ◽  
I.S. Han ◽  
E.M. Gwon ◽  
...  

Recently, Seoul city has tried to modify and upgrade the existing facilities and utilities and to improve the established water treatment plants, instead of application of a new treatment process. These efforts have finally lowered the turbidity of finished water below 0.1NTU. Small lab-scale and pilot-scale experiments have been conducted and they have provided optimum parameters for the design and operation of drinking water treatment plants. In addition, quantitative and/or trace analysis technologies developed for monitoring water quality of effluent from unit processes and automization of facilities, have contributed to the improvement of turbidity in drinking water. The Kueui water treatment plant, one of the drinking water treatment plants in Seoul, produces finished water with 0.08 NTU. It results from the operators' continuous endeavor to lower the turbidity in a scale of 0.01 NTU. The data for 12 months indicated that turbidity of settled water was less than 1.16 NTU and that of filtered water was less than 0.12 NTU for 95% of the period. Sedimentation basins and sand filters satisfy the recommended turbidity criteria, 2 NTU and 0.3 NTU, respectively. Also Kueui water treatment plant has focused on the control of organic matters to decrease in DBPs and on the removal of microorganisms.


1998 ◽  
Vol 37 (9) ◽  
pp. 105-112 ◽  
Author(s):  
Ana María Ingallinella ◽  
Luis María Stecca ◽  
Martin Wegelin

This paper presents the methodology used for the rehabilitation of the pretreatment stage in a water treatment plant for a village located in Bolivia which has 3500 inhabitants. The treatment plant was initially composed by horizontal-flow roughing filters and slow sand filters, but due to the high contents of colloidal turbidity of the providing source, it did not work properly. A plan of rehabilitation was made which comprised laboratory tests, pilot tests and proposal of modifications based on the results of previous stages. The laboratory tests were made in order to find the optimum conditions to coagulate the raw water. It was found that horizontal-flow roughing filters must be turned into up-flow roughing filters, so a pilot plant was built and was operated for three months in order to find suitable design parameters. The results obtained obtained during the operation of the pilot plant and the proposal of modifications are presented. The results of operation of the final plant, which are also reported, demonstrated the advantages of the up-flow roughing filtration as a pretreatment stage when it is necessary to add chemical products in small treatment plants.


2018 ◽  
Vol 10 (11) ◽  
pp. 4239 ◽  
Author(s):  
Marina Valentukevičienė ◽  
Lina Bagdžiūnaitė-Litvinaitienė ◽  
Viktoras Chadyšas ◽  
Andrius Litvinaitis

The trans-boundary area between the Europe Union and other countries is highly susceptible to changes in water quality and variations in the potential pollution load that could influence its eco-systems significantly. The Neris (Viliya) River is one of the biggest surface water bodies in Lithuania and Belarus with an ecologically important area protected by international legislation. The study was aimed at evaluating the impacts of integrated pollution on water quality of the Neris River taking into account different storm-water flows and ecological scenarios. For this purpose, qualitative and quantitative statistical evaluation was set up and calculation was done; different integrated pollution loads of the catchment area were estimated. The evaluation considered a decrease in river discharge due to changes in the regional storm-water flow and technological development that should lead to the growing covered surface and a reduction in the untreated storm-water flows. The obtained results indicated that, in the case of storm-water treatment, the total nitrate and phosphate concentrations will decrease, while in the cases of changes in combined suspended solid, the concentration of nutrients will decrease. Thus, a trans-boundary storm-water treatment plant of the Viliya River is required as it should eliminate pollution accumulation and restore its acceptable environmental status. A coordinated international project for the entire catchment of the Neris (Viliya) River based on the specifications and requirements of the EU Water Framework Directive (EU 2000) should be developed and implemented. Subsequently, ecological river-use policies should be established at the international level, which should offer considerable perspectives for the sustainable development of the area.


2019 ◽  
Vol 24 (1) ◽  
pp. 135-163
Author(s):  
Jader Martínez Girón ◽  
Jenny Vanessa Marín-Rivera ◽  
Mauricio Quintero-Angel

Population growth and urbanization pose a greater pressure for the treatment of drinking water. Additionally, different treatment units, such as decanters and filters, accumulate high concentrations of iron (Fe) and manganese (Mn), which in many cases can be discharged into the environment without any treatment when maintenance is performed. Therefore, this paper evaluates the effectiveness of vertical subsurface wetlands for Fe and Mn removal from wastewater in drinking water treatment plants, taking a pilot scale wetland with an ascending gravel bed with two types of plants: C. esculenta and P. australis in El Hormiguero (Cali, Colombia), as an example. The pilot system had three upstream vertical wetlands, two of them planted and the third one without a plant used as a control. The wetlands were arranged in parallel and each formed by three gravel beds of different diameter. The results showed no significant difference for the percentage of removal in the three wetlands for turbidity (98 %), Fe (90 %), dissolved Fe (97 %) and Mn (98 %). The dissolved oxygen presented a significant difference between the planted wetlands and the control. C. esculenta had the highest concentration of Fe in the root with (103.5 ± 20.8) µg/g ; while P. australis had the highest average of Fe concentrations in leaves and stem with (45.7 ± 24) µg/g and (41.4 ± 9.1) µg/g, respectively. It is concluded that subsurface wetlands can be an interesting alternative for wastewater treatment in the maintenance of drinking water treatment plants. However, more research is needed for the use of vegetation or some technologies for the removal or reduction of the pollutant load in wetlands, since each drinking water treatment plant will require a treatment system for wastewater, which in turn requires a wastewater treatment system as well.


2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Benjamin Buysschaert ◽  
Lotte Vermijs ◽  
Agathi Naka ◽  
Nico Boon ◽  
Bart De Gusseme

Sign in / Sign up

Export Citation Format

Share Document