Partial nitrification of sludge reject water by means of aerobic granulation

2011 ◽  
Vol 64 (9) ◽  
pp. 1906-1912 ◽  
Author(s):  
S. López-Palau ◽  
A. Pericas ◽  
J. Dosta ◽  
J. Mata-Álvarez

Granular sludge formation was performed in a laboratory scale Sequencing Batch Reactor (SBR) fed with supernatant of anaerobic digestion of sewage sludge. This effluent was concentrated progressively in order to enhance biomass capacity without inhibiting it. During the first part of the study, ammonium nitrogen was converted to nitrate, so conventional nitrification took place. When a nitrogen load of 0.8 g N L−1 d−1 was treated, the effluent concentration of nitrite started to increase while the nitrate concentration decreased until it disappeared. So, partial nitrification was achieved. At the end of this study, a nitrogen load of 1.1 g N L−1 d−1 was treated obtaining an effluent with 50% ammonium and 50% nitrite. The volatile suspended solids concentration in the reactor reached 10 g VSS L−1. At this point the granule morphology was quite round and no filamentous bacteria was observed. The Feret's diameter was in the range between 1 and 6 mm with an average value of 4.5 mm. Roundness value was all the time higher than 0.7. Granule density increased during the experimental period, obtaining a final value of 7.0 g L−1.

2001 ◽  
Vol 43 (3) ◽  
pp. 19-26 ◽  
Author(s):  
T. Etterer ◽  
P. A. Wilderer

A sequencing batch reactor (SBR) was used to investigate the generation of different granules cultured under aerobic and alternating anaerobic/aerobic conditions. The reactor was fed with synthetic wastewater. A substrate loading rate of 3.6 kg COD/ (m3 day) was applied. Granules of heterotrophic microorganisms were formed. After the first experimental period of 8 weeks the average granule diameter was 3.2 mm. In the second period, alternating anaerobic/aerobic conditions were applied to form granular sludge with an average diameter of 3.0 mm. An isopycnic centrifugation procedure was used to determine the characteristic density of the aerobic granular sludge. The average density of the granular sludge was 1.044 g/ml and 1.048 g/ml, respectively. In free-settling tests the final settling velocity of single aggregates was examined to estimate porosity. Settling velocities up to 2.0 cm/s could be measured. Calculations based on the experimental results showed an average granula porosity of 72% for the first run and 65% average porosity for the second run. This paper indicates the validity of general assumptions in free-settling tests.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2965
Author(s):  
Joanna Majtacz ◽  
Dominika Grubba ◽  
Krzysztof Czerwionka

The liquid phase of the digestate (LPD) contains a relatively high concentration of nitrogen, with total ammonium nitrogen being the dominant form of nitrogen, as well as other essential nutrients such as phosphorus and potassium. Consequently, it must be treated before it is released into the environment. However, there are no reports of co-purification of LPD in the anammox process in sequencing batch reactor with granular sludge, which is a novelty for the presented research. The main objective of this paper is to assess the possibility of nitrogen removal in the anammox process with LPD from biogas plants conducting the co-fermentation process along with the participation of agricultural products (cattle slurry). This publication presents the research results of the efficiency of the anammox process, accounting for the effect of dissolved organic matter. The conducted experiments revealed the potential of LPD purification, which co-ferments waste activated sludge and bovine slurry for the anammox process. In the reactor ammonium utilization rate (AUR) process with LPD addition increased from 2.3 mg N/(g VSS∙h) with 0.5% LPD addition to 8.5 mg N/(g VSS∙h) with 7.5% LPD addition. SAA in the reactor with LPD addition increased from 5.3 mg N/(g VSS∙h) with 0.5% LPD addition to 18.5 mg N/(g VSS∙h) with 4 and 5% LPD addition. With the addition of 7.5% LPD, SAA dropped to a value of 18.1 mg N/(g VSS∙h) in the LPD reactor.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3004
Author(s):  
Dominika Grubba ◽  
Joanna Majtacz

Anaerobic ammonia-oxidizing bacteria have a more comprehensive metabolism than expected - there may be other electron acceptors that oxidize ammonium nitrogen under anaerobic conditions, in addition to the well-known nitrite nitrogen, one of which is sulfate in the sulfammox process. Sulfate-containing compounds are part of the medium for the anammox process, but their concentrations are not particularly high (0.2 g MgSO4 ∙ 7H2O/dm3 and 0.00625 g FeSO4/dm3). They can react to some extent with influent ammonium nitrogen. In this work, tests were carried out in two sequencing batch reactors with granular sludge. The first reactor (R1) operated in a 6 h cycle, and the concentration of the inflowing sulfate was kept at 44 mg/dm3∙d. The second reactor (R2) was operated until the 36th day in a 6 h cycle; the influencing concentration was 180 mg SO42−/dm3∙d from the 37th to 64th day in a 3 h cycle, with an influencing concentration of 360 mg SO42−/dm3∙d; and from the 65th to 90th day, the reactor was operated again in a 6 h cycle with an influencing concentration of 180 mg SO42−/dm3∙d. Along with the increased share of sulfate, both the ammonium utilization rate and specific anammox activity showed an increasing trend. As soon as the sulfate dosage was reduced, the ammonium utilization rate and specific anammox activity values dropped. Therefore, it can be concluded that sulfate-containing compounds contribute to the efficiency and rate of the anammox process.


2016 ◽  
Vol 100 (21) ◽  
pp. 9381-9391 ◽  
Author(s):  
Jianfang Wang ◽  
Feiyue Qian ◽  
Xiaopeng Liu ◽  
Wenru Liu ◽  
Shuyong Wang ◽  
...  

2015 ◽  
Vol 71 (3) ◽  
pp. 440-445 ◽  
Author(s):  
C. Bumbac ◽  
I. A. Ionescu ◽  
O. Tiron ◽  
V. R. Badescu

The focus of this study was to assess the treatment performance and granule progression over time within a continuous flow reactor. A continuous flow airlift reactor was seeded with aerobic granules from a laboratory scale sequencing batch reactor (SBR) and fed with dairy wastewater. Stereomicroscopic investigations showed that the granules maintained their integrity during the experimental period. Laser diffraction investigation showed proof of new granules formation with 100–500 μm diameter after only 2 weeks of operation. The treatment performances were satisfactory and more or less similar to the ones obtained from the SBR. Thus, removal efficiencies of 81–93% and 85–94% were observed for chemical oxygen demand and biological oxygen demand, respectively. The N-NH+4 was nitrified with removal efficiencies of 83–99% while the nitrate produced was simultaneously denitrified – highest nitrate concentration determined in the effluent was 4.2 mg/L. The removal efficiency of total nitrogen was between 52 and 80% depending on influent nitrogen load (39.3–76.2 mg/L). Phosphate removal efficiencies ranged between 65 and above 99% depending on the influent phosphate concentration, which varied between 11.2 and 28.3 mg/L.


2013 ◽  
Vol 39 (1) ◽  
pp. 83-91 ◽  
Author(s):  
Katarzyna Bernat

Abstract In this study, the dependence between volumetric exchange rate (n) in an SBR (Sequencing Batch Reactor) with a modified cycle and simultaneous nitrification and denitrification (SND) efficiency during the treatment of anaerobic sludge digester supernatant was determined. In the SBR cycle alternating three aeration phases (with limited dissolved oxygen (DO) concentration up to 0.7 mg O2/L) and two mixing phases were applied. The lengths of each aeration and mixing phases were 4 and 5.5 h, respectively. Independently of n, a total removal of ammonium was achieved. However, at n = 0.1 d-1 and n = 0.3 d-1 nitrates were the main product of nitrification, while at n = 0.5 d-1, both nitrates and nitrites occurred in the effluent. Under these operational conditions, despite low COD/N (ca. 4) ratio in the influent, denitrification in activated sludge was observed. A higher denitrification efficiency at n = 0.5 d-1 (51.3%) than at n = 0.1 d-1 (7.8%) indicated that n was a crucial factor influencing SND via nitrite and nitrate in the SBR with a low oxygen concentration in aeration phases.


Author(s):  
Saima Limi ◽  
George Ojakian ◽  
Robert Raffaniello

AbstractRab3D is a low molecular weight GTP-binding protein that associates with secretory granules in exocrine cells. AR42J cells are derived from rat pancreatic exocrine tumor cells and develop an acinar cell-like phenotype when treated with dexamethasone (Dex). In the present study, we examined the role of Rab3D in Dex-treated AR42J cells. Rab3D expression and localization were analyzed by subcellular fractionation and immunoblotting. The role of Rab3D was examined by overexpressing myc-labeled wild-type-Rab3D and a constitutively active form of Rab3D (Rab3D-Q81L) in AR42J cells. We found that Rab3D is predominantly membrane-associated in AR42J cells and co-localizes with zymogen granules (ZG). Following CCK-8-induced exocytosis, amylase-positive ZGs appeared to move towards the periphery of the cell and co-localization between Rab3D and amylase was less complete when compared to basal conditions. Overexpression of WT, but not mutant Rab3D, resulted in an increase in cellular amylase levels. Overexpression of mutant and WT Rab3D did not affect granule morphology, CCK-8-induced secretion, long-term (48 hr) basal amylase release or granule density. We conclude that Rab3D is not involved in agonist-induced exocytosis in AR42J cells. Instead, Rab3D may regulate amylase content in these cells.


1993 ◽  
Vol 28 (10) ◽  
pp. 267-274 ◽  
Author(s):  
M. Imura ◽  
E. Suzuki ◽  
T. Kitao ◽  
S. Iwai

In order to apply a sequencing batch reactor activated sludge process to small scale treatment facilities, various experiments were conducted by manufacturing an experimental apparatus made of a factory-produced FRP cylinder transverse tank (Ø 2,500mm). Results of the verification test conducted for one year by leading the wastewater discharged from apartment houses into the experimental apparatus were as follows. Excellent performance was achieved without any addition of carbon source, irrespective of the organic compound concentration and the temperature of raw wastewater. Organic substances, nitrogen and phosphorus were removed simultaneously. Due to the automated operation format, stable performance was obtained with only periodic maintenance. Though water depth of the experimental plant was shallow, effective sedimentation of activated sludge was continued during the experimental period. Regarding the aerobic and anaerobic process, nitrification and denitrification occurred smoothly.


Author(s):  
Bikash Adhikari ◽  
Shilpa Koirala

Along with the population, organic waste has been rising significantly in recent years. The resulting uncontrollable waste loads and conventional methods of waste treatment have begun to cause chaos at the landfill sites. This study evaluates the performance of an anaerobic digestion process using batch reactors for the treatment of landfill leachate collected from the Sisdole landfill site in Nuwakot, Nepal. A lab-scale anaerobic batch reactor was set up in Kathmandu University, Nepal. Using an anaerobic digestion process, COD values of the leachate decreased from 2230 mg/l to 1125 mg/l (removal efficiency of ~50%), whereas total solids concentration decreased from 1925 to 925 mg/L under a retention time of 10 days. In addition, Monod’s model was established to design an Anaerobic Sequential Batch Reactor to achieve better performance, resulting in 85% removal efficiency for the leachate treatment. Overall, this study analyzed the anaerobic digestion process on the landfill leachate of Sisdole, and modeled the process to identify the conditions required for increasing the efficiency of treatment of Sisdole landfill leachate.


Sign in / Sign up

Export Citation Format

Share Document