Removal of APIs and bacteria from hospital wastewater by MBR plus O3, O3 + H2O2, PAC or ClO2

2013 ◽  
Vol 67 (4) ◽  
pp. 854-862 ◽  
Author(s):  
U. Nielsen ◽  
C. Hastrup ◽  
M. M. Klausen ◽  
B. M. Pedersen ◽  
G. H. Kristensen ◽  
...  

The objective of this study has been to develop technologies that can reduce the content of active pharmaceutical ingredients (APIs) and bacteria from hospital wastewater. The results from the laboratory- and pilot-scale testings showed that efficient removal of the vast majority of APIs could be achieved by a membrane bioreactor (MBR) followed by ozone, ozone + hydrogen peroxide or powdered activated carbon (PAC). Chlorine dioxide (ClO2) was significantly less effective. MBR + PAC (450 mg/l) was the most efficient technology, while the most cost-efficient technology was MBR + ozone (156 mg O3/l applied over 20 min). With MBR an efficient removal of Escherichia coli and enterococci was measured, and no antibiotic resistant bacteria were detected in the effluent. With MBR + ozone and MBR + PAC also the measured effluent concentrations of APIs (e.g. ciprofloxacin, sulfamethoxazole and sulfamethizole) were below available predicted no-effect concentrations (PNEC) for the marine environment without dilution. Iodinated contrast media were also reduced significantly (80–99% for iohexol, iopromide and ioversol and 40–99% for amidotrizoateacid). A full-scale MBR treatment plant with ozone at a hospital with 900 beds is estimated to require an investment cost of €1.6 mill. and an operating cost of €1/m3 of treated water.

2011 ◽  
Vol 64 (12) ◽  
pp. 2352-2361 ◽  
Author(s):  
A. Luczkiewicz ◽  
K. Jankowska ◽  
R. Bray ◽  
E. Kulbat ◽  
B. Quant ◽  
...  

The main objective of the study was to assess the potential of three systems (UV irradiation, ozonation, and micro/ultrafiltration) operated in a pilot scale in removal of antimicrobial-resistant fecal bacteria from secondary effluent of the local wastewater treatment plant (700,000 population equivalent). The effectiveness of the processes was analysed using the removal ratio of fecal indicators (Escherichia coli and Enterococcus spp.). The susceptibility of fecal indicators to antimicrobial agents important in human therapy was examined. Resistance to nitrofurantoin and erythromycin was common among enterococci and followed by resistance to fluoroquinolones and tetracycline. Resistance to high-level aminoglycosides and glycopeptides was also observed. E. coli isolates were most frequently resistant to penicillins and tetracycline. The extended-spectrum beta-lactamase-producing E. coli was detected once, after ozonation. Substantial attention should be paid to the E. coli and enterococci resistant to three or more chemical classes of antimicrobials (MAR), which in general constituted up to 15 and 49% of the tested isolates, respectively. Although the applied methods were effective in elimination of fecal indicators (removal efficiency up to 99.99%), special attention has to be paid to the application of sufficient disinfection and operation conditions to avoid selection of antimicrobial resistant bacteria.


Author(s):  
Mya Thandar ◽  
Hla Hla Win ◽  
Khin May Oo ◽  
Moh Moh Kyi ◽  
Myat Su Khine

Background: Antibiotic resistance is an emerging concern both for public and animal health globally and also threatens the achievements of modern medicine. This study aimed to generate the baseline data of drug resistance pathogens in diversity of waste water of Yangon Region, Myanmar.Methods: A cross-sectional descriptive study was conducted from January to July 2021. A total of forty samples of wastewater (two samples each from ten hospitals, one sample each from five poultry farms, five aquacultures and ten community drains) were aseptically collected, transported in ice box and processed following standard procedure for bacterial isolation and detection of antibiotic sensitivity pattern. Identification and antibiotic susceptibility testing of isolated colonies were done by VITEK 2 compact system.Results: A total of 106 bacterial isolates were identified and 50% were from hospitals, 31.1%were from community drains and 9.4% each from poultry farms and aquacultures. The most frequently identified isolates were Enterobacteriaceae (65.1%) followed by Acinetobacter species (11.3%) and Pseudomonas species (8.5%). Among the isolated organisms, ESBL producers and Carbapenemase producer were 7.5% and 0.9% respectively. ESBL producers (62.5%) were resistant to cefuroxime, cefuroxime-axetil, cefotaxime, ceftriaxone and minocycline. Carbapenem resistant Enterobacteriaceae was multidrug resistant but sensitive to amikacin, tigecycline and cefaclor.Conclusions: The proportion of antibiotic resistant bacteria are higher in hospital wastewater than other sites. Hence proper treatment plant for hospital wastewater should be installed and need to mitigate antibiotic resistance with a ‘one-health’ approach.   


2020 ◽  
Vol 6 (3) ◽  
pp. 460-468
Author(s):  
Mahmudul Hasan ◽  
Md Khaled Hossain ◽  
Nazmi Ara Rumi ◽  
Md Shajedur Rahman ◽  
Md Aoulad Hosen

Antibiotics used in hospitals for patient care which potentially growing antibiotic resistant bacteria in hospital waste and simultaneously transmitting to non-hospital environments by drainage system. Total 20 samples were collected randomly and examined with different bacteriological, biochemical and molecular tests. 55 bacterial isolates were isolated from all samples, among them 32 (58.2%) were from hospital environment and 23 (42.1%) were from non-hospital environment. The result of total viable count showed that maximum countable bacteria (2.20×1010) CFUs/ml that were from MARCH and the minimum number of countable bacteria (1.0×1010) CFUs/ml were isolated from the sample of Kalitola. Among the isolates, E. coli, Pseudomonas spp, Klebsiellaspp, Salmonella spp, Staphylococcus spp and Vibrio spp were identified 16 (29%), 12 (21.8%), 9 (16.4%), 8 (14.5%), 5 (9%) and 5 (9%) respectively. Multidrug resistant (MDR) Pseudomonas aeruginosawas characterized from hospital wastewater by polymerase chain reaction assays targeting the virulence gene and 16S rRNA gene region was amplified with the universal primers. PCR amplification band was found at 1399 bp. The antibiotic sensitivity study revealed that among the hospital isolates, about (83.3%) were resistant against Ampicillin, followed by Amikacin, Kanamycin and Penicillin (77.8%). On the other hand, non- hospital isolates were resistant against Amoxicillin and Penicillin (66.7%) followed by Ampicillin and Vancomycin (58.3%). Both hospital and non-hospital isolates were sensitive to Gentamycin respectively 72.5% and 75%. The findings of the experiment suggested that hospital wastewater contained more MDR bacteria than non-hospital wastewater which are released into receiving water bodies that may cause a serious threat to public health. Reducing indiscriminate use of antibiotics in both hospital and non-hospital settings and the use of wastewater treatment plant (WTP) in a hospital may reduce this problem. Asian J. Med. Biol. Res. September 2020, 6(3): 460-468


2000 ◽  
Vol 41 (1) ◽  
pp. 163-166 ◽  
Author(s):  
W. Gebert ◽  
P.A. Wilderer

The investigated effects of heating the filling material in trickling filters were carried out at the Ingolstadt wastewater treatment plant, Germany. Two pilot scale trickling filters were set up. Heat exchanger pipings were embedded in the filter media of one of these trickling filters, and the temperature in the trickling filter was raised. The other trickling filter was operated under normal temperature conditions, and was used as a control. The results clearly demonstrate that the performance of trickling filters cannot be constantly improved by heating the biofilm support media. A sustained increase of the metabolic rates did not occur. The decrease of the solubility of oxgen in water and mass transfer limitations caused by an increase of the biofilm thickness are the main reasons for that. Thus, the heating of trickling filters (e.g. by waste heat utilization) in order to increase the capacity of trickling filters under cold weather conditions cannot be recommended.


2010 ◽  
Vol 62 (8) ◽  
pp. 1965-1965
Author(s):  
S. Park ◽  
J. Lee ◽  
J. Park ◽  
I. Byun ◽  
T. Park ◽  
...  

Publisher‘s note. We regret that the published version of this article erroneously denoted the first author as corresponding author; in fact the formal corresponding author of this paper is Professor Taeho Lee, whose address is repeated below.


2014 ◽  
Vol 955-959 ◽  
pp. 3393-3399 ◽  
Author(s):  
Wei Zheng ◽  
Yan Ming Yang ◽  
Yun Long Li ◽  
Jian Qiu Zheng

The process technique and design parameters of project of Solar Ozonic Ecological Sewage Treatment Plant (short for SOESTP) which consists of anaerobic reactor, horizontal subsurface flow (HSSF) constructed wetlands(CWs) and the combination of solar power and ozone disinfection are described, the paper further examines the removal efficiency for treating rural domestic sewage, running expense and recycling ability of product water. The results show that the average percentage removal values of CODcr,BOD5,SS,TN,NH3-N,TP range from 95.6% to 98.0%, 96.0% to 98.7%, 93.1% to 96.1%, 97.0% to 98.9%, 96.9% to 99.5%, 98.2% to 99.6%, respectively, the reduction of fecal coliform (FC) reaches 99.9%, the effluent quality meets the first level A criteria specified in Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant(GB18918-2002). The running cost of SOESTP is 0.063yuan/ m3, saves much more than traditional sewage treatment, and the ozone water obtained from the reservoir will be an ideal choice for disinfection .The system has characteristics of easy manipulation, low operating cost, achieving advanced water, energy conservation and environment protection, is thought to be very suitable for use as the promotion of rural small - scale sewage treatment.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bach-Ngan Nguyen ◽  
Florian Tieves ◽  
Thomas Rohr ◽  
Hilke Wobst ◽  
Felix S. Schöpf ◽  
...  

AbstractThe production of peptides as active pharmaceutical ingredients (APIs) by recombinant technologies is of emerging interest. A reliable production platform, however, is still missing due the inherent characteristics of peptides such as proteolytic sensitivity, aggregation and cytotoxicity. We have developed a new technology named Numaswitch solving present limitations. Numaswitch was successfully employed for the production of diverse peptides and small proteins varying in length, physicochemical and functional characteristics, including Teriparatide, Linaclotide, human β-amyloid and Serum amyloid A3. Additionally, the potential of Numaswitch for a cost-efficient commercial production is demonstrated yielding > 2 g Teriparatide per liter fermentation broth in a quality meeting API standard.


Antibiotics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 571
Author(s):  
Nicole Zacharias ◽  
Iris Löckener ◽  
Sarah M. Essert ◽  
Esther Sib ◽  
Gabriele Bierbaum ◽  
...  

Bacterial infections have been treated effectively by antibiotics since the discovery of penicillin in 1928. A worldwide increase in the use of antibiotics led to the emergence of antibiotic resistant strains in almost all bacterial pathogens, which complicates the treatment of infectious diseases. Antibiotic-resistant bacteria play an important role in increasing the risk associated with the usage of surface waters (e.g., irrigation, recreation) and the spread of the resistance genes. Many studies show that important pathogenic antibiotic-resistant bacteria can enter the environment by the discharge of sewage treatment plants and combined sewage overflow events. Mussels have successfully been used as bio-indicators of heavy metals, chemicals and parasites; they may also be efficient bio-indicators for viruses and bacteria. In this study an influence of the discharge of a sewage treatment plant could be shown in regard to the presence of E. coli in higher concentrations in the mussels downstream the treatment plant. Antibiotic-resistant bacteria, resistant against one or two classes of antibiotics and relevance for human health could be detected in the mussels at different sampling sites of the river Rhine. No multidrug-resistant bacteria could be isolated from the mussels, although they were found in samples of the surrounding water body.


Sign in / Sign up

Export Citation Format

Share Document