Increasing the sludge energy potential of wastewater treatment plants by introducing fine mesh sieves for primary treatment

2013 ◽  
Vol 69 (3) ◽  
pp. 560-565 ◽  
Author(s):  
Bjarne Paulsrud ◽  
Bjørn Rusten ◽  
Bjørn Aas

The objective of this study was to compare some basic characteristics of sludge from fine mesh sieves (sieve sludge) with sludge from primary clarifiers (primary sludge) regarding their energy potential with a focus on anaerobic digestion and/or incineration. Nineteen samples of sludge from fine mesh sieve plants (most of them without fine screens and grit chambers as pre-treatment) and 10 samples of primary sludge were analysed for the content of dry solids (DS), volatile solids (VS), chemical oxygen demand (COD), calorific value and methane potential. The results demonstrated that the sieve sludges have significantly higher VS content and higher methane potential than primary sludges, clearly indicating an increased sludge energy potential if fine mesh sieves are used for primary treatment instead of primary clarifiers at wastewater treatment plants with anaerobic digesters. If the sludges from primary treatment are to be incinerated or used as fuel in cement kilns, there is no significant difference in energy potential (given as calorific values) for the two types of primary treatment.

2014 ◽  
Vol 69 (9) ◽  
pp. 1942-1948 ◽  
Author(s):  
V. A. Razafimanantsoa ◽  
L. Ydstebø ◽  
T. Bilstad ◽  
A. K. Sahu ◽  
B. Rusten

The purpose of this project was to investigate the effect of selective particle removal during primary treatment on downstream biological nutrient removal processes. Bench-scale Salsnes Filter fine mesh sieves were used as a primary treatment to obtain different organic fractions to test the effect on denitrification. Activated sludge and moving bed biofilm reactor anoxic tests were performed on municipal wastewater collected from two full-scale wastewater treatment plants located around the Oslo region (Norway). About 43% of the suspended solids in the wastewater was less than 18 μm, and 14% was between 18 and 150 μm. The effect of particulate chemical oxygen demand (COD) removal on denitrification rates was very minor.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1246
Author(s):  
Aleš Paulu ◽  
Jan Bartáček ◽  
Markéta Šerešová ◽  
Vladimír Kočí

Alternative wastewater treatment (WWT) technologies with lower environmental impacts seem to be the way forward in the pursuit of sustainable wastewater treatment plants (WWTPs). Process modelling of material and energy flows together with life-cycle assessment (LCA) can help to better understand these impacts and show the right direction for their development. Here, we apply this combined approach to three scenarios: conventional WWT; conventional WWT + chemically enhanced primary treatment (CEPT); conventional WWT + CEPT + side stream partial nitritation/anammox (PN/A). For each scenario, equations were developed to calculate chemical oxygen demand and nitrogen flow (solid and dissolved form) through the WWTP and to estimate the energy demands of its unit operations. LCA showed that the main environmental impact categories for all scenarios were global warming potential (GWP), eutrophication potential (EP) and marine aquatic eco-toxicity potential (MAETP). Compared with conventional WWT, CEPT and CEPT combined with PN/A resulted in a higher sum of normalized and weighed environmental indicators, by 19.5% and 16.4%, respectively (20.0% and 18.3% including biogenic carbon). Interestingly, the environmentally positive features of the alternative scenarios were often traded-off against other increased negative impacts. This suggests that further development is needed to consider these technologies a sustainable alternative.


2021 ◽  
Vol 9 ◽  
Author(s):  
Benjamin Korth ◽  
Claudia Heber ◽  
Monika Normant-Saremba ◽  
Thomas Maskow ◽  
Falk Harnisch

Wastewater treatment plants (WWTP) are aimed to be transformed from sinks into sources of energy and material. For fostering corresponding engineering efforts and economic assessments, comprehensive knowledge of the energy content of wastewater is required. We show in this proof-of-concept study that these data can be gathered by combining micro-bomb combustion calorimetry with freeze-drying. Thereby, the methodology for measuring the combustion enthalpy (ΔcH) of wastewater is significantly improved by decreasing the time demand for the drying process as only tiny amounts of samples are required. Here, the effluent of the primary clarifier of a wastewater treatment plant treating low-strength municipal wastewater was sampled on a weekly basis for 1 year, yielding 53 composite samples that were analyzed for ΔcH and standard wastewater parameters. A robust correlation between the chemical oxygen demand (COD) and ΔcH of −14.9 ± 3.5 kJ gCOD−1 (r = 0.51) was determined, verifying previous results obtained with more laborious and time-demanding methodologies. The global chemical energy potential of the sampled WWTP is presumably higher as the first treatment steps and losses during sample preparation reduced the amount of energy-rich compounds. A stronger correlation was observed between ΔcH and the biochemical oxygen demand (BOD5, r = 0.64), suggesting its usage for predicting the potential of wastewater as feedstock for biotechnological applications. This demonstrates that micro-bomb combustion calorimetry can be applied for deriving precious information on the energy content of wastewater from simple COD measurements.


2017 ◽  
Vol 75 (11) ◽  
pp. 2598-2606 ◽  
Author(s):  
B. Rusten ◽  
S. S. Rathnaweera ◽  
E. Rismyhr ◽  
A. K. Sahu ◽  
J. Ntiako

Fine mesh rotating belt sieves (RBS) offer a very compact solution for removal of particles from wastewater. This paper shows examples from pilot-scale testing of primary treatment, chemically enhanced primary treatment (CEPT) and secondary solids separation of biofilm solids from moving bed biofilm reactors (MBBRs). Primary treatment using a 350 microns belt showed more than 40% removal of total suspended solids (TSS) and 30% removal of chemical oxygen demand (COD) at sieve rates as high as 160 m³/m²-h. Maximum sieve rate tested was 288 m³/m²-h and maximum particle load was 80 kg TSS/m²-h. When the filter mat on the belt increased from 10 to 55 g TSS/m², the removal efficiency for TSS increased from about 35 to 60%. CEPT is a simple and effective way of increasing the removal efficiency of RBS. Adding about 1 mg/L of cationic polymer and about 2 min of flocculation time, the removal of TSS typically increased from 40–50% without polymer to 60–70% with polymer. Using coagulation and flocculation ahead of the RBS, separation of biofilm solids was successful. Removal efficiencies of 90% TSS, 83% total P and 84% total COD were achieved with a 90 microns belt at a sieve rate of 41 m³/m²-h.


2004 ◽  
Vol 4 (1) ◽  
pp. 23-33
Author(s):  
H. Ødegaard ◽  
Z. Liao ◽  
E. Melin ◽  
H. Helness

Many cities need to build compact wastewater treatment plants because of lack of land. This paper discusses compact treatment methods. An enhanced primary treatment process based on coarse media filtration is analysed. A high-rate secondary wastewater treatment process has specifically been investigated, consisting of a highly loaded moving bed biofilm reactor directly followed by a coagulation and floc separation step. The objective with this high-rate process is to meet secondary treatment effluent standards at a minimum use of chemicals, minimum sludge production and minimum footprint. It is demonstrated that the biofilm in the bioreactor mainly deals with the soluble organic matter while coagulation deals with the colloidal matter. The bioreactor may, therefore, be designed based on the soluble COD loading only, resulting in a very compact plant when a compact biomass/floc separation reactor (i.e. flotation or direct filtration) is used. The paper reports specifically on the coagulant choice in flotation and filter run time in direct filtration.


2020 ◽  
Vol 15 (2) ◽  
pp. 515-527
Author(s):  
L. Desa ◽  
P. Kängsepp ◽  
L. Quadri ◽  
G. Bellotti ◽  
K. Sørensen ◽  
...  

Abstract Many wastewater treatment plants (WWTP) in touristic areas struggle to achieve the effluent requirements due to seasonal variations in population. In alpine areas, the climate also determines a low wastewater temperature, which implies long sludge retention time (SRT) needed for the growth of nitrifying biomass in conventional activated sludge (CAS). Moreover, combined sewers generate high flow and dilution. The present study shows how the treatment efficiency of an existing CAS plant with tertiary treatment can be upgraded by adding a compact line in parallel, consisting of a Moving Bed Biofilm Reactor (MBBR)-coagulation-flocculation-disc filtration. This allows the treatment of influent variations in the MBBR and a constant flow supply to the activated sludge. The performance of the new 2-step process was comparable to that of the improved existing one. Regardless significant variations in flow (10,000–25,000 m3/d) and total suspended solids (TSS) (50–300 mg/L after primary treatment) the effluent quality fulfilled the discharge requirements. Based on yearly average effluent data, TSS were 11 mg/L, chemical oxygen demand (COD) 27 mg/L and total phosphorus (TP) 0.8 mg/L. After the upgrade, ammonium nitrogen (NH4-N) dropped from 4.9 mg/L to 1.3 mg/L and the chemical consumption for phosphorus removal was reduced.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Zhaoqian Jing ◽  
Shiwei Cao

To enhance the biodegradability of residual organic pollutants in secondary effluent of wastewater treatment plants, UV photolysis and ozonation were used in combination as pretreatment before a biological aerating filter (BAF). The results indicated that UV photolysis could not remove much COD (chemical oxygen demand), and the performance of ozonation was better than the former. With UV photolysis combined with ozonation (UV/O3), COD removal was much higher than the sum of that with UV photolysis and ozonation alone, which indicated that UV photolysis could efficiently promote COD removal during ozonation. This pretreatment also improved molecular weight distribution (MWD) and biodegradability greatly. Proportion of organic compounds with molecular weight (MW) <3 kDalton was increased from 51.9% to 85.9%. COD removal rates with BAF and O3/BAF were only about 25% and 38%, respectively. When UV/O3oxidation was combined with BAF, the average COD removal rate reached above 61%, which was about 2.5 times of that with BAF alone. With influent COD ranging from 65 to 84 mg/L, the effluent COD was stably in the scope of 23–31 mg/L. The combination of UV/O3oxidation with BAF was quite efficient in organic pollutants removal for tertiary wastewater treatment.


2020 ◽  
Vol 13 ◽  
pp. 117862212093585 ◽  
Author(s):  
Karim M Morsy ◽  
Mohamed K Mostafa ◽  
Khaled Z Abdalla ◽  
Mona M Galal

Although significant progress has been achieved in the field of environmental impact assessment in many engineering disciplines, the impact of wastewater treatment plants has not yet been well integrated. In light of this remarkable scientific progress, the outputs of the plants as treated water and clean sludge have become potential sources of irrigation and energy, not a waste. The aim of this study is to assess the environmental impacts of upgrading the wastewater treatment plants from primary to secondary treatment. The Lifecycle Assessment Framework (ISO 14040 and 14044) was applied using GaBi Software. Abu Rawash wastewater treatment plant (WWTP) has been taken as a case study. Two scenarios were studied, Scenario 1 is the current situation of the WWTP using the primary treatment units and Scenario 2 is upgrading the WWTP by adding secondary treatment units. The study highlighted the influence and cumulative impact of upgrading all the primary WWTPs in Egypt to secondary treatment. With the high amount of energy consumed in the aeration process, energy recovery methods were proposed to boost the circular economy concept in Abu Rawash WWTP in order to achieve optimal results from environmental and economic perspectives.


Sign in / Sign up

Export Citation Format

Share Document