Preliminary evaluation of biosolids characteristics for anaerobic membrane reactors treating municipal wastewaters

2015 ◽  
Vol 72 (8) ◽  
pp. 1446-1454 ◽  
Author(s):  
Qirong Dong ◽  
Martha Dagnew ◽  
Jeff Cumin ◽  
Wayne Parker

This study assessed the characteristics of biosolids of a pilot-scale anaerobic membrane bioreactor (AnMBR) treating municipal wastewater. The production of total solids (TS) and volatile solids (VS) was comparable to that reported for the extended aeration system at solids residence time (SRT) longer than 40 days. The yields of TS and VS were reduced as SRT increased from 40 to 100 days and increased with the addition of 26 mg/L of FeCl3. The AnMBR destroyed 60–82% of the VS loading in feed wastewater and hence it was concluded the biosolids met the requirements for vector attraction reduction for land application. The concentrations of volatile suspended solids and total suspended solids in the sludge were less than those reported after anaerobic digestion of conventional primary and secondary sludge mixtures, and hence dewatering of the waste stream may be required for some applications. The nutrient content in terms of total Kjeldahl nitrogen and total phosphorus was similar to that of anaerobically digested municipal sludges. The dewaterability of the biosolids was poorer than that reported for sludges from aerobic treatment and anaerobically digested sludges. Dewaterability was improved by addition of FeCl3 and reduced SRT. The biosolids met standards for land application with regards to the concentration of heavy metals but would need further treatment to meet Class B pathogen indicator criteria.

2016 ◽  
Vol 74 (2) ◽  
pp. 438-447 ◽  
Author(s):  
J. Väänänen ◽  
M. Cimbritz ◽  
J. la Cour Jansen

Primary and chemically enhanced primary wastewater treatment with microsieving (disc or drum filtration) was studied at the large pilot scale at seven municipal wastewater treatment plants in Europe. Without chemical dosing, the reduction of suspended solids (SS) was (on average) 50% (20–65%). By introducing chemically enhanced primary treatment and dosing with cationic polymer only, SS removal could be controlled and increased to >80%. A maximum SS removal of >90% was achieved with a chemical dosing of >0.007 mg polymer/mg influent SS and 20 mg Al3+/L or 30 mg Fe3+/L. When comparing sieve pore sizes of 30–40 μm with 100 μm, the effluent SS was comparable, indicating that the larger sieve pore size could be used due to the higher loading capacity for the solids. Phosphorus removal was adjusted with the coagulant dose, and a removal of 95–97% was achieved. Moreover, microsieving offers favourable conditions for automated dosing control due to the low retention time in the filter.


2003 ◽  
Vol 47 (3) ◽  
pp. 157-162 ◽  
Author(s):  
R.L. Rajala ◽  
M. Pulkkanen ◽  
M. Pessi ◽  
H. Heinonen-Tanski

The elimination of wastewater microbes is often necessary when effluent receiving waters are reused for different purposes e.g. for irrigation or as a raw water source of drinking water. In the present study, rapid sand filtration (SF) combined with the use of polyaluminium chloride coagulation was used as a pre-treatment to improve the quality of wastewater effluent before further treatment with UV irradiation. Pilot-scale experiments were run in four treatment plants in Finland. Treatment performance was followed by measuring physical and microbial parameters. Rapid sand filtration reduced suspended solids, turbidity and colour of effluents by about 90%, 70-80% and 20-50% respectively. It also improved the UV transmittance of water by up to 20%. Microbes and phosphorus were reduced by 90-99% and to 0.05 mg/L respectively. UV irradiation further reduced the number of microbes up to 99.9%. The efficiency of UV doses in pilot UV reactors was confirmed with collimated-beam device determinations and with added FRNA phages. More than 99.9% reduction of MS2 was achieved with the dose of 140mWs/cm2 in pilot UV reactors. Rapid sand filtration and the subsequent UV irradiation reduced the number of all the tested microbes to a low level, often below the detection limit. Suspended solids and the water turbidity were reduced to 1-2 mg/L and ~1 NTU respectively.


Revista EIA ◽  
2013 ◽  
Vol 6 (11) ◽  
pp. 21
Author(s):  
Patricia Torres ◽  
Carlos Madera ◽  
Jorge Silva

Uno de los principales problemas de calidad que presentan los biosólidos de plantas de tratamiento de aguas residuales domésticas –PTAR– es el contenido de microorganismos patógenos que los clasifica en muchos casos como Clase B con restricción para uso agrícola. Este estudio evaluó la estabilización alcalina de los biosólidos de la PTAR Cañaveralejo (Cali, Colombia) para mejorar su calidad microbiológica, empleando dos tipos de cal (hidratada y viva) en dosis entre 8 y 25 % y dos tipos de ceniza con dosis entre 8 y 40 % en unidades experimentales de 0,2 m2 con un tiempo de contacto de 13 días. Los resultados mostraron que con cal se logró reducción total de las variables de respuesta evaluadas (coliformes fecales, Salmonella sp y huevos de helmintos), mientras que el poder alcalinizante de las cenizas evaluadas fue insuficiente. El biosólido higienizado con cal presenta alto potencial de uso agrícola por su calidad microbiológica y por el contenido final de materia orgánica y nutrientes (N, P) que pueden beneficiar los suelos, pero es recomendable evaluar la optimización a escala piloto de la dosificación de cal y la aplicación del biosólido en diferentes tipos de suelos y cultivos para precisar los beneficios o medidas preventivas antes de la aplicación.Abstract: One of the main quality problems of biosolids from domestic wastewater treatment plants –WWTP– is the high concentration of pathogens, often classified as a class B, with restriction for use in agriculture. This study evaluated the alkali stabilization of biosolids from Cañaveralejo wastewater treatment plant (PTAR-C), located in Cali, Colombia, in order to improve their microbiological quality using two types of lime (quick and hydrated) with doses between 8 to 25 % and two types of ash with 8 to 40 % as doses, in experimental units 0,2 m2with 13 days of contact time. The results showed that both type of lime reached the total reduction of evaluated monitoring variables (faecal coliforms, Salmonella sp, helmints eggs) while the alkali power of ashes were lower. The obtained biosolids treated with lime have a high potential use in agriculture purposes for the good microbiological quality, and for the organic matter and nutrient content (N, P) that can generate benefit to the soil, but it is recommendable to evaluate at pilot scale the lime doses and application of biosolid in different soils types and crops in order to precise the benefits or prevent measurements before application of material in soil.


1994 ◽  
Vol 30 (4) ◽  
pp. 151-157 ◽  
Author(s):  
E. Trouve ◽  
V. Urbain ◽  
J. Manem

Membrane bioreactors (MBR) represent a new generation of processes that can be applied to the treatment of municipal and industrial wastewater. Their main advantage is their ability to keep all biomass in the bioreactor, thus removing all suspended solids from the treated water and disinfecting it according to the membrane cut-off threshold. Perfect control as well as separation of hydraulic (HRT) and biomass retention times (SRT) also means better control of biological activity. Treatment of municipal wastewater on a semi-industrial aerobic pilot-scale MBR (HRT: 24 hr; SRT: 25 days) resulted in complete nitrification and from 93 to 99.9% removal of COD, N-NH3 and suspended solids. The COD removed loading rate was equal to 0.2 kg/kg VSS.day and the average sludge production was around 0.2 kgSS/kgCOD. Filtration through 0.1 µm ceramic hollow fibres (Surface = 1.1 m2) under moderate conditions (1.5 to 3.5 m/s; TMP < 2 bars) maintained good flow rates of 60 to 80 1/hr at 20°C for over 15 days without chemical washing. The performances shown here over a total period of 100 days emphasize perfect stability of the MBR process in treating municipal wastewater.


2018 ◽  
Vol 2017 (2) ◽  
pp. 481-491 ◽  
Author(s):  
Qirong Dong ◽  
Wayne Parker ◽  
Martha Dagnew

Abstract A transient study was conducted at pilot scale to assess the impact of Fe dosage on the dynamics of biological and membrane performance of an anaerobic membrane bioreactor (AnMBR) treating authentic municipal wastewater. A transient model of the AnMBR system was employed to assist with interpretation of the observed responses in the mixed liquor under different FeCl3 dosages. A high dosage (43 mg FeCl3/LSewage) resulted in a significant accumulation of fixed suspended solids and volatile suspended solids (VSS) and reduction of colloidal COD in the mixed liquor. The elevated dosages appeared to reduce the biodegradability of VSS that was present in the raw wastewater. Intermediate dosages of FeCl3 (21–12 mg/L) had less effect on these responses and did not appear to affect VSS biodegradation. Membrane performance was significantly affected by FeCl3 dosage as indicated by reversible resistance (RR) and physically irreversible resistance (IR). RR was closely related to the colloidal COD in the mixed liquor, thus responded quickly to Fe dosage. Physically, IR had a delayed response to changes in the colloidal COD concentrations in the mixed liquor and this was attributed to the effect of slow mass transfer of colloidal matter between the mixed liquor and the membrane.


2020 ◽  
Vol 55 (4) ◽  
pp. 382-393
Author(s):  
Guillaume LeBlond ◽  
Patrick M. D'Aoust ◽  
Chris Kinsley ◽  
Robert Delatolla

Abstract The microsieving discfilter technology was investigated at the pilot scale. The pilot was configured to treat the effluent from a municipal wastewater multi-lagoon facility consisting of two facultative lagoons and a third seasonally aerated lagoon that is aerated to mitigate hydrogen sulfide release. The 10 μm filter, operated without chemical enhancement, demonstrates 60.1 ± 22.6% removal of the lagoon effluent total suspended solids (TSS) during periods of operation without aeration of the third lagoon. Aeration of the third lagoon of the multi-lagoon system prior to discharge renders the 10 μm filter cloth ineffective with respect to solids removal. The 5 μm filter cloth performs effective nonchemically enhanced removal of solids even during aeration of the lagoon, removing 68.2 ± 9.85% of effluent TSS. The greater performance of the 5 μm filter was achieved at the expense of a lower maximum conveyance capacity than the 10 μm filter. The 10 and 5 μm filters decrease the effluent total phosphorus (TP) concentrations by 0.14 and 0.13 mg-P/L, respectively. Algae, characterized as Chlorophyll α, shows removal from influent concentrations of 10.25 ± 4.19 μg/L to concentrations of 4.61 ± 1.28 μg/L for the 10 μm filter, and 4.10 ± 0.65 μg/L for the 5 μm filter.


1994 ◽  
Vol 30 (11) ◽  
pp. 25-33 ◽  
Author(s):  
Yoshimasa Watanabe ◽  
Satoshi Okabe ◽  
Tomochika Arata ◽  
Yuji Haruta

A comprehensive wastewater treatment system that accomplishes oxidation of organic matter, nitrification, and denitrification was developed, and its characteristics and performance were investigated. A municipal wastewater was treated by an up-flow aerated biofilter (UAB), in which biofilms were developed on stainless meshes installed horizontally. This UAB exhibited a great potential ability of oxidation of organic matter, SS stabilization, and nitrification due to a unique aeration mechanism giving high DO concentrations with relatively low aeration rates. Another unique feature of the UAB was that attached biofilms on stainless meshes physically filtered out and/or adsorbed suspended solids in the wastewater in addition to the biological oxidation of organic matter. A stable nitrification could be achieved at HRT=10 hours corresponding to a hydraulic loading of 86 L m−2 d−1 and at a ratio of aeration rate to wastewater flow rate (A/W) of 2, which is considerably low as compared to aeration rates of typical activated sludge systems. This UAB system also could handle relatively high hydraulic loading rates. The UAB used in this study still have enough space to install more stainless meshes so as to reduce hydraulic loading rates resulting in the reduction of HRT and aeration rate, which leads to improvement of the system performance as well as reduction of the running cost.


2017 ◽  
Vol 2017 (1) ◽  
pp. 1056-1064
Author(s):  
Jake Finlinson ◽  
Dave Ruud ◽  
Andy Bary ◽  
Maile Lono-Batura

2003 ◽  
Vol 3 (4) ◽  
pp. 145-152 ◽  
Author(s):  
H. Heinonen-Tanski ◽  
P. Juntunen ◽  
R. Rajala ◽  
E. Haume ◽  
A. Niemelä

Municipal treated wastewater has been tertiary treated in a pilot-scale rapid sand filter. The filtration process was improved by using polyaluminium coagulants. The sand-filtered water was further treated with one or two UV reactors. The quality changes of wastewater were measured with transmittance, total phosphorus, soluble phosphorus, and somatic coliphages, FRNA-coliphages, FC, enterococci and fecal clostridia. Sand filtration alone without coagulants improved slightly some physico-chemical parameters and it had almost no effect on content of microorganisms. If coagulants were used, the filtration was more effective. The reductions were 88-98% for microbial groups and 80% for total phosphorus. The wastewater would meet the requirements for bathing waters (2,000 FC/100 ml, EU, 1976). UV further improved the hygiene level; this type of treated wastewater could be used for unrestricted irrigation (2.2 TC/100 ml, US.EPA 1992). The improvement was better if coagulants were used. The price for tertiary treatment (filtration + UV) would have been 0.036 Euro/m3 according to prices in 2001 in 22 Mm3/a. The investment cost needed for the filtration unit was 0.020 Euro/m3 (6%/15a). Filtration with coagulants is recommended in spite of its costs, since the low transmittance of unfiltered wastewater impairs the efficiency of the UV treatment.


Sign in / Sign up

Export Citation Format

Share Document