scholarly journals Nitrogen removal using an anammox membrane bioreactor at low temperature

2015 ◽  
Vol 72 (12) ◽  
pp. 2148-2153 ◽  
Author(s):  
Takanori Awata ◽  
Yumiko Goto ◽  
Tomonori Kindaichi ◽  
Noriatsu Ozaki ◽  
Akiyoshi Ohashi

Membrane bioreactors (MBRs) have the ability to completely retain biomass and are thus suitable for slowly growing anammox bacteria. In the present study, an anammox MBR was operated to investigate whether the anammox activity would remain stable at low temperature, without anammox biomass washout. The maximum nitrogen removal rates were 6.7 and 1.1 g-N L−1 day−1 at 35 °C and 15 °C, respectively. Fluorescence in situ hybridization and 16S rRNA-based phylogenetic analysis revealed no change in the predominant anammox species with temperature because of the complete retention of anammox biomass in the MBR. These results indicate that the predominant anammox bacteria in the MBR cannot adapt to a low temperature during short-term operation. Conversely, anammox activity recovered rapidly after restoring the temperature from the lower value to the optimal temperature (35 °C). The rapid recovery of anammox activity is a distinct advantage of using an MBR anammox reactor.

2021 ◽  
Vol 13 (8) ◽  
pp. 4591
Author(s):  
Shuanglei Huang ◽  
Daishe Wu

The tremendous input of ammonium and rare earth element (REE) ions released by the enormous consumption of (NH4)2SO4 in in situ leaching for ion-adsorption RE mining caused serious ground and surface water contamination. Anaerobic ammonium oxidation (anammox) was a sustainable in situ technology that can reduce this nitrogen pollution. In this research, in situ, semi in situ, and ex situ method of inoculation that included low-concentration (0.02 mg·L−1) and high-concentration (0.10 mg·L−1) lanthanum (La)(III) were adopted to explore effective start-up strategies for starting up anammox reactors seeded with activated sludge and anammox sludge. The reactors were refrigerated for 30 days at 4 °C to investigate the effects of La(III) during a period of low-temperature. The results showed that the in situ and semi in situ enrichment strategies with the addition of La(III) at a low-concentration La(III) addition (0.02 mg·L−1) reduced the length of time required to reactivate the sludge until it reached a state of stable anammox activity and high nitrogen removal efficiency by 60–71 days. The addition of La(III) promoted the formation of sludge floc with a compact structure that enabled it to resist the adverse effects of low temperature and so to maintain a high abundance of AnAOB and microbacterial community diversity of sludge during refrigeration period. The addition of La(III) at a high concentration caused the cellular percentage of AnAOB to decrease from 54.60 ± 6.19% to 17.35 ± 6.69% during the enrichment and reduced nitrogen removal efficiency to an unrecoverable level to post-refrigeration.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Qinyu Li ◽  
Jinhui Chen ◽  
Guo-hua Liu ◽  
Xianglong Xu ◽  
Qian Zhang ◽  
...  

AbstractAnaerobic ammonium oxidation (anammox) bacteria significantly improve the efficiency and reduce cost of nitrogen removal in wastewater treatment plants. However, their slow growth and vulnerable activity limit the application of anammox technology. In this paper, the enhancement of biotin on the nitrogen removal activity of anammox bacteria in short-term batch experiments was studied. We found that biotin played a significant role in promoting anammox activity within a biotin concentration range of 0.1–1.5 mg/L. At a biotin concentration of 1.0 mg/L, the total nitrogen removal rate (NRR) increased by 112%, extracellular polymeric substance (EPS) secretion and heme production significantly improved, and anammox bacterial biomass increased to maximum levels. Moreover, the predominant genus of anammox bacteria was Candidatus Brocadia.


2017 ◽  
Vol 19 (3) ◽  
pp. 377-388 ◽  

Salinity is a key environmental factor for the successful application of anammox technology in wastewater treatment, because it impacts the activity and the community structure of anammox bacteria. In this study, the changes in activity and population shifts of an anammox system response to the elevated salt stress (0, 5, 10, 20, 30 and 40 g NaCl/L) were studied. The results show that the anammox reactor performed effectively even at 30 g NaCl/L salinity after an appropriate acclimatization. The nitrogen removal rate maintained at 0.28 g N L-1d-1 with the nitrogen removal efficiency of 76%, though the high environmental salinity might inhibit the anammox growth in the long-term operation. 16S rRNA high-throughput sequencing results revealed that Ca. Brocadia, Ca. Jettenia and Ca. Kuenenia were the dominant anammox bacteria at all salinities. Ca. Brocadia and Ca. Jettenia were quite sensitive to salinity, and 5 g NaCl/L dosing could cause a sharp decline in their abundance. Nevertheless, these three anammox genus finally survived in the system with a steady specific anammox activity of 0.13 g N g VSS-1d-1. Specially, a novel cluster, Brocadiaceae_unclassified, which possibly belongs to anammox bacteria, became the dominant genus at the salinity over 20 g NaCl/L and likely contributed partially to the nitrogen removals. Our findings elucidated the inherent link between community dynamics and anammox system performance and stability under salty environment, and proved that anammox technologies can be an effective technology for treatment of saline ammonia-rich wastewater.


2012 ◽  
Vol 66 (5) ◽  
pp. 958-964 ◽  
Author(s):  
Takanori Awata ◽  
Katsuichiro Tanabe ◽  
Tomonori Kindaichi ◽  
Noriatsu Ozaki ◽  
Akiyoshi Ohashi

Anaerobic ammonium oxidation (anammox) is a type of biological oxidation mediated by a group of Planctomycete-like bacteria. Members of the genus Candidatus Scalindua are mainly found in marine environments, but not exclusively. This group is cultured using different inoculums and conditions; however, its optimal growth conditions are not clear. Additionally, little information is known about the factors that influence the activity and the selection of a population of marine anammox bacteria. This study was conducted to investigate the influence of temperature and salinity on the marine anammox community. To accomplish this, an up-flow fixed-bed column reactor was operated, and quantitative fluorescence in situ hybridization (FISH) with probes specific to dominant marine anammox bacteria was conducted. Anammox activity was observed at 20 and 30 °C, but not at 10 °C. A nitrogen removal rate of 0.32 kg TN m–3 day–1 was obtained at 20 °C. These results suggest that temperature affects the activity (nitrogen removal rate) of anammox bacteria, while salinity does not affect the activity in the marine anammox biofilm.


2020 ◽  
Author(s):  
Robert Niederdorfer ◽  
Damian Hausherr ◽  
Alejandro Palomo ◽  
Jing Wei ◽  
Paul Magyar ◽  
...  

AbstractAutotrophic nitrogen removal by anaerobic ammonium oxidizing (anammox) bacteria is an energy-efficient nitrogen removal process in wastewater treatment. However, full-scale deployment under mainstream conditions remains challenging for practitioners due to the high stress susceptibility of anammox bacteria towards fluctuations in dissolved oxygen and temperature. Here, we investigated the response of microbial biofilms with verified anammox activity to oxygen shocks under favorable and cold temperature regimes. Genome-centric metagenomics and metatranscriptomics were used to investigate the stress response on various biological levels. We show that temperature regime and strength of oxygen perturbations induced divergent responses from the process level down to the transcriptional profile of individual taxa. Temperature induced distinct transcriptional states in compositionally identical communities and transient pulses of dissolved oxygen resulted in the upregulation of stress-response only under favorable temperatures. Anammox species and other key biofilm taxa display different transcriptional responses to the induced stress regimes.


2011 ◽  
Vol 63 (4) ◽  
pp. 710-718 ◽  
Author(s):  
S. Q. Ni ◽  
J. Meng

In order to study the performance, inhibition and recovery processes of different types of anammox sludge, three up-flow anaerobic sludge blanket reactors were inoculated with flocculent sludge, granular sludge, and cultured inactive methanogenic granules. During stable period, with nitrogen loading rates of 0.9–1.1 kg/m3/d, the total nitrogen removal efficiencies of these reactors averaged at 86.5%, 90.8% and 93.5%, respectively. The kinetics study indicated that the reactor seeded with cultured inactive methanogenic granules possessed the highest nitrogen removal potential, followed by the granular anammox reactor and the flocculent anammox reactor. The study suggested that a concentration as high as 988.3 mg NH4+-N/L and 484.4 mg NO2−-N/L could totally inhibit granular anammox bacteria and result in a inhibition of 50% flocculent anammox activity. In addition, reactors seeded with flocculent sludge and anammox granules could be fully recovered by decreasing their influent substrate concentrations. However, the decrease of influent substrate concentration for the reactor with cultured inactive methanogenic granules could only restore about 75% of its bacterial activity. In this study, anammox bacteria purity was the major factor to evaluate the recovery ability in comparison with sludge type. Free ammonia was a more appropriate indicator for the anammox recovery process compared to free nitric acid.


2019 ◽  
Vol 79 (10) ◽  
pp. 1860-1867 ◽  
Author(s):  
Cherh Yih Mak ◽  
Jih Gaw Lin ◽  
Wen Hsing Chen ◽  
Choon Aun Ng ◽  
Mohammed J. K. Bashir

Abstract The application of the anammox process has great potential in treating nitrogen-rich wastewater. The presence of Fe (II) is expected to affect the growth and activity of anammox bacteria. Short-term (acute) and long-term effects (chronic) of Fe (II) on anammox activity were investigated. In the short-term study, results demonstrated that the optimum concentration of Fe (II) that could be added to anammox is 0.08 mM, at which specific anammox activity (SAA) improved by 60% compared to the control assay, 0.00 mM. The inhibition concentration, IC50, of Fe (II) was found to be 0.192 mM. Kinetics of anammox specific growth rate were estimated based on results of the batch test and evaluated with Han-Levenspiel's substrate inhibition kinetics model. The optimum concentration and IC50 of Fe (II) predicted by the Han-Levenspiel model was similar to the batch test, with values of 0.07 mM and 0.20 mM, respectively. The long-term effect of Fe (II) on the performance of a sequencing batch reactor (SBR) was evaluated. Results showed that an appropriate Fe (II) addition enhanced anammox activity, achieving 85% NH4+-N and 96% NO2−-N removal efficiency when 0.08 mM of Fe (II) was added. Quantitative polymerase chain reaction (qPCR) was adopted to detect and identify the anammox bacteria.


2007 ◽  
Vol 73 (14) ◽  
pp. 4648-4657 ◽  
Author(s):  
Dagmar Woebken ◽  
Bernhard M. Fuchs ◽  
Marcel M. M. Kuypers ◽  
Rudolf Amann

ABSTRACT Recent studies have shown that the anaerobic oxidation of ammonium by anammox bacteria plays an important role in catalyzing the loss of nitrogen from marine oxygen minimum zones (OMZ). However, in situ oxygen concentrations of up to 25 μM and ammonium concentrations close to or below the detection limit in the layer of anammox activity are hard to reconcile with the current knowledge of the physiology of anammox bacteria. We therefore investigated samples from the Namibian OMZ by comparative 16S rRNA gene analysis and fluorescence in situ hybridization. Our results showed that “Candidatus Scalindua” spp., the typical marine anammox bacteria, colonized microscopic particles that were likely the remains of either macroscopic marine snow particles or resuspended particles. These particles were slightly but significantly (P < 0.01) enriched in Gammaproteobacteria (11.8% ± 5.0%) compared to the free-water phase (8.1% ± 1.8%). No preference for the attachment to particles could be observed for members of the Alphaproteobacteria and Bacteroidetes, which were abundant (12 to 17%) in both habitats. The alphaproteobacterial SAR11 clade, the Euryarchaeota, and group I Crenarchaeota, were all significantly depleted in particles compared to their presence in the free-water phase (16.5% ± 3.5% versus 2.6% ± 1.7%, 2.7% ± 1.9% versus <1%, and 14.9% ± 4.6% versus 2.2% ± 1.8%, respectively, all P < 0.001). Sequence analysis of the crenarchaeotal 16S rRNA genes showed a 99% sequence identity to the nitrifying “Nitrosopumilus maritimus.” Even though we could not observe conspicuous consortium-like structures of anammox bacteria with particle-enriched bacterioplankton groups, we hypothesize that members of Gammaproteobacteria, Alphaproteobacteria, and Bacteroidetes play a critical role in extending the anammox reaction to nutrient-depleted suboxic water layers in the Namibian upwelling system by creating anoxic, nutrient-enriched microniches.


2019 ◽  
Vol 94 (4) ◽  
pp. 1315-1322 ◽  
Author(s):  
Ning Li ◽  
Wei Zeng ◽  
Zhijia Miao ◽  
Baogui Wang ◽  
Zaixing Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document