scholarly journals Macrolide antibiotics removal using a circulating TiO2-coated paper photoreactor: parametric study and hydrodynamic flow characterization

2016 ◽  
Vol 73 (11) ◽  
pp. 2627-2637 ◽  
Author(s):  
Amel Ounnar ◽  
Abdelkrim Bouzaza ◽  
Lidia Favier ◽  
Fatiha Bentahar

The present work investigates the photocatalytic degradation efficiency of biorecalcitrant macrolide antibiotics in a circulating tubular photoreactor. As target pollutants, spiramycin (SPM) and tylosin (TYL) were considered in this study. The photoreactor leads to the use of an immobilized titanium dioxide on non-woven paper under artificial UV-lamp irradiation. Maximum removal efficiency was achieved at the optimum conditions of natural pH, low pollutant concentration and a 0.35 L min−1 flow rate. A Langmuir–Hinshelwood model was used to fit experimental results and the model constants were determined. Moreover, the total organic carbon analysis reveals that SPM and TYL mineralization is not complete. In addition, the study of the residence time distribution allowed us to investigate the flow regime of the reactor. Electrical energy consumption for photocatalytic degradation of macrolides using circulating TiO2-coated paper photoreactor was lower compared with some reported photoreactors used for the elimination of pharmaceutic compounds. A repetitive reuse of the immobilized catalyst was also studied in order to check its photoactivity performance.

2021 ◽  
Vol 11 (1) ◽  
pp. 89-93
Author(s):  
Chinh Tran Van ◽  
Anh Tran Thi Hien ◽  
Tu Ha Thi Cam ◽  
Hoai Truong Viet ◽  
Phuong Nguyen Thi Hoai ◽  
...  

This paper describes a novel process for the synthesis of TiO2 from titanium slag, which is realized via roasting titanium slag with KHSO4, acid leaching and hydrolysis. The results showed that the optimum conditions were a mass ratio of KHSO4 to titanium slag of 6, a temperature of 600 oC for 1,5 hours. Besides, this study investigated the possibility of synthesized TiO2 for photocatalytic degradation of methylene blue.


2018 ◽  
Author(s):  
◽  
Dushen Bisetty Naidoo

Water plays a fundamental role in sustaining life on Earth. Water is largely used by industries to support their processes and utilities. Through growing industrialisation, each year more and more wastewater is generated and the demand for water rises rapidly. The incorrect and unsustainable use of water is placing a great strain on the South African water supply. Much emphasis is now being placed on industries re-using and treating their effluent and wastewater. Of recent, government has placed stringent specifications for industrial effluent quality and industry find it difficult to continuously improve their effluent quality to be within acceptable limits. Crude refineries are major contributors to wastewater, producing effluent comprising largely of Oil, grease and hydrocarbon. Much focus is placed on finding alternate means of wastewater treatment to assist with the removal of oil and hydrocarbon contaminants. More effluent treatment processes need to be explored to ensure industries operate in a sustainable manner and do not place unnecessary strain on the South African water supply. Photocatalytic degradation is a wastewater treatment technique that has drawn a lot of attention in the last decade. This is an Advanced Oxidation Process (AOP) which involves the production of a hydroxyl radical (OH-) which is then used for the degradation of organic contaminants. The degradation converts the organic pollutants into CO2 and H2O. A synthetic crude refinery effluent was developed and underwent the photocatalytic degradation process. The catalyst concentration was varied at 2 g/L, 5 g/L and 8 g/L. The oxidation reaction took place over time intervals of 30, 60 and 90 minutes and aeration to the reaction vessel was supplied at 0.768 L/min, 1.11 L/min and 1.48 L/min. This photodegradation took place under UV light conditions. The degradation process was conducted with the aim of evaluating the degradation of oil and phenol in crude refinery effluent. Sulphates were also monitored to observe if an effect was noticed. Design of Experiment (DOE) involved the development of experimental run matrices for a multilevel factorial design, Central Composite Design (CCD) and Box-Behnken Design (BBD) model. Randomized runs were then conducted as per the design matrix for each model. Model verification and evaluation was then conducted and the best suited degradation models were selected. It was observed that the best fitted model for the degradation of oil in water was the BBD. The best design model for phenol degradation was the CCD. Throughout the photocatalytic degradation process, it was noted that no change took place with the sulphates. The models were then optimised to determine the optimum degradation conditions. This was carried out using Response Surface Methodology (RSM) techniques. The CCD model yielded a combined oil and phenol degradation of 71.5%. This occurred at a catalyst concentration of 2.07g/L, a run time of 90 minutes and an air flow rate of 0.768L/min. The BBD model produced a combined oil and phenol degradation of 68%. This took place at a catalyst concentration of 2 g/L, a run time of 30 minutes and an air flow rate of 1.04 L/min. pH were monitored throughput the degradation process and both these models yielded output products within the stipulated pH band. The testing of a local crude refinery effluent was conducted using the CCD and BBD optimum conditions. When using the CCD optimum conditions degradation of 76.98% and 84.21% was observed for both oil and phenol respectively. The BBD optimum conditions yielded a degradation of 83.33% for oil and 78.95% for phenol. This indicated that the photocatalytic process can be considered for degrading crude refinery effluent as its products met the specifications of municipal industrial waste water. The above results clearly indicate a positive outcome for the treatment method of photocatalytic degradation on the synthetic crude refinery effluent. This technique can therefore be further explored when considering crude effluent treatment and the treatment advantages should be used by all industries to improve effluent quality and allow for more sustainable and environmentally friendly operations.


2012 ◽  
Vol 5 (2) ◽  
pp. 107
Author(s):  
Dini Fatmi ◽  
Admin Alif ◽  
Hamzar Suyani

One method to overcome the scarcity of alternative sources of energy on earth is through the development of photovoltaic cells. This method used a solar energy to electrical energy transformation. In this research, breaking (splitting) of water molecules into H2 and O2 gas by the photovoltaic process uses electrodes CuO/C with Na2SO4 electrolyte. In this process used 2 photovoltaic cells as electricity producing and U-shaped electrolysis cell for solver (splitting) of water molecule produce H2 and O2 gas. CuO electrode (anode) is made through the burning of copper rod in a furnace at temperature 400 oC with a variety of combustion 1, 3, 4 times each lasting for 1 hs, while the cathode in the form of carbon rods obtained from 2B pencil. The optimum conditions for Na2SO4 electrolyte concentration is 0.8 N and for CuO electrodes with 3x burning. Optimum efficiency photovoltaic process was 2.66%. H2 and O2 gas volume obtained near stoichiometric ratio is 2 : 1.


2020 ◽  
Vol 1008 ◽  
pp. 97-103
Author(s):  
Mahmoud Samy ◽  
Mona G. Ibrahim ◽  
Mohamed Gar Alalm ◽  
Manabu Fujii

Methylene blue (MB) is one of the commonly used dyes in the textile industry and can be used as a model pollutant for the textile industry wastewater. In this work, the photocatalytic degradation of MB by synthesized nanoparticles of lanthanum vanadate (LaVO4) was assessed. The effects of pH, initial MB concentration and catalyst dose on the removal performance of MB were investigated and measuring the optimum values of these operational conditions was performed using response surface methodology (RSM). Catalyst dose of 0.43 g/L, initial MB concentration of 5.0 mg/L, and pH of 6.86 were found to be the optimum conditions in reaction time of 60 min. A mathematical model was formed to relate the removal efficiency of MB to the aforementioned operating parameters. The removal efficiency of MB was 91% without any scavengers at a catalyst dose of 0.3 g/L, pH of 7 and initial MB concentration of 10 mg/L. The trapping experiments confirmed the participation of different reactive species in the photo-degradation process. The degradation rates of MB were 91%, 86%, 81%, 77.70% and 72% in five successive runs using LaVO4.


Inventions ◽  
2020 ◽  
Vol 5 (3) ◽  
pp. 32 ◽  
Author(s):  
Badre El Majid ◽  
Saad Motahhir ◽  
Aboubakr El Hammoumi ◽  
Ambar Lebbadi ◽  
Abdelaziz El Ghzizal

This concept paper describes a device consisting of a disinfectant wristband for the hands of the wearer and objects that the wearer intends to touch. This wristband can be powered automatically by the movement of the user’s hand or by solar cells or, if necessary, by a power outlet. It disinfects the surface of the hands and the objects in front of them using an ultraviolet (UV) lamp. Control and monitoring can be carried out automatically or manually, which guarantees complete and effective disinfection. The electronic control system, which is fully integrated into the UV emitter head, regulates the intensity and duration of the UV radiation and also manages the electrical energy. In addition, the wristband can be fitted with an optional watch to improve its decoration and ergonomics. The device in question has a compact, elegant, and practical shape. This hand sanitizing wristband can be an effective tool in the fight against the current COVID-19 pandemic and, in general, help to address the health challenges related to hygiene and disease prevention.


2011 ◽  
Vol 8 (s1) ◽  
pp. S19-S26 ◽  
Author(s):  
M. Montazerozohori ◽  
S. Nezami ◽  
S. Mojahedi

Anatase titanium dioxide catalyzed photodegradation of tolonium chloride at various bufferic pH of 2, 7, 9 and 12 in aqueous solution is presented. The effect of some physicochemical parameters such as initial concentration of dye, catalyst amount and reaction time on photocatalytic degradation has been investigated in a photo-reactor cell containing high pressure mercury lamp to obtain the optimum conditions in each bufferic pH at constant temperature. A complete spectrophotometric kinetic study of tolonium chloride under high pressure irradiation at buffer media was performed. The photocatalytic degradation observed rate constants (kobs) were found to be 2.90×10-3, 3.30×10-3, 3.20×10-3and 5.20×10-3min-1for buffer pH of 2-12 respectively. It was found that a pseudo-first-order kinetic model based on Langmuir-Hinshelwood one is usable to photodegradation of this compound at all considered buffer pH. In addition to these, the Langmuir-Hinshelwood rate constants, krfor the titled compound at various pH are reported.


2012 ◽  
Vol 65 (8) ◽  
pp. 1392-1398 ◽  
Author(s):  
Soraya Moreno Palácio ◽  
Fernando Rodolfo Espinoza-Quiñones ◽  
Aparecido Nivaldo Módenes ◽  
Diego Ricieri Manenti ◽  
Cláudio Celestino Oliveira ◽  
...  

The aim of the present study was to optimise the photocatalytic degradation of a mixture of six commercial azo dyes, by exposure to UV radiation in an aqueous solution containing TiO2-P25. Response surface methodology, based on a 32 full factorial experimental design with three replicates was employed for process optimisation with respect to two parameters: TiO2 (0.1–0.9 g/L) and H2O2 (1–100 mmol/L). The optimum conditions for photocatalytic degradation were achieved at concentrations of 0.5 g TiO2/L and 50 mmol H2O2/L, respectively. Dye mineralisation was confirmed by monitoring TOC, conductivity, sulfate and nitrate ions, with a sulfate ion yield of 96% under optimal reactor conditions. Complete decolorisation was attained after 240 min irradiation time for all tested azo-dyes, in a process which followed a pseudo-first kinetic order model, with a kinetic rate constant of approximately 0.018 min−1. Based on these results, this photocatalytic process has promise as an alternative for the treatment of textile effluents.


2002 ◽  
Vol 5 (1) ◽  
Author(s):  
Andrew J. Feitz ◽  
T. David Waite ◽  
Brace H. Boyden ◽  
Gary J. Jones

AbstractA solar immobilized-catalyst photocatalytic reactor design and TiO


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Sajjad Khezrianjoo ◽  
Hosakere Doddarevanna Revanasiddappa

A detailed investigation of photocatalytic degradation of Acid Yellow 36 (AY36) has been carried out in aqueous heterogeneous medium containing ZnO as photocatalyst in a batch reactor. The effects of some parameters such as pH, catalyst loading, and ethanol concentration were examined. Solutions with initial concentration of 50 mg L−1 of dye, within the range of typical concentration in textile wastewaters, were treated at natural pH of 6.93 and catalyst concentration of 1 g L−1 after 180 min irradiation. Investigations on the active species indicated that hydroxyl radicals play the major role in the process. Experiments showed that the most efficient pH on the removal of the dye with photocatalytic degradation process was 8; however, acidic pH was favored for the dark surface adsorption. Electrical energy consumption per order of magnitude for photocatalytic degradation of AY36 has been also determined.


Sign in / Sign up

Export Citation Format

Share Document