scholarly journals Effect of precursor type on the reduction of concentrated nitrate using zero-valent copper and sodium borohydride

2017 ◽  
Vol 77 (1) ◽  
pp. 114-122 ◽  
Author(s):  
Tihitinna Asmellash Belay ◽  
C. Y. Lin ◽  
H. M. Hsiao ◽  
M. F. Chang ◽  
J. C. Liu

Abstract In this study, we demonstrated that the choice of precursor has a strong effect on the reduction of nitrate (NO3−) using zero-valent copper (Cu0) synthesized by sodium borohydride (NaBH4). Different precursors: CuSO4, CuO, Cu2O, Cu powder, and Cu mesh were used to reduce NO3− at 677 mg-N/L under the reducing conditions of NaBH4. Compared with the prehydrolyzed samples, those prepared without prehydrolysis exhibited lower reduction rates, longer times and higher concentrations of nitrite (NO2−) intermediate. It was found that one-time addition of NaBH4 resulted in higher reduction rate and less NO2− intermediate than two-step addition. Results showed that Cu0 from CuSO4 possessed the smallest particle size (890.9 nm), highest surface area (26.0 m2/g), and highest reaction rate (0.166 min−1). Values of pseudo-first-order constant (kobs) were in the order: CuSO4 > CuO > Cu2O > Cu powder >Cu mesh. However, values of surface area-normalized reaction rate (kSA) were approximately equal. It was proposed that NO3− was reduced to NO2− on Cu0, and then converted to NH4+ and N2, respectively; H2 generated from both NaBH4 hydration and Cu (II) reduction contributed to NO3− reduction as well.

Author(s):  
Hao Peng ◽  
Yumeng Leng ◽  
Jing Guo

Removal of hexavalent chromium had attracted much more attention as it was a hazardous contaminant. Electrochemical reduction technology was applied to removal chromium (VI) from wastewater. The mechanism and parameters affect the reduction process were investigated. The results showed that the reduction efficiency was significantly affected by the concentration of H2SO4, current density and reaction temperature. And the reduction efficiency was up to 86.45% at concentration of H2SO4 of 100g/L, reaction temperature of 70 ℃, current density at 50 A/m2, reaction time at 180 min and stirring rate of 500 rpm. The reduction process of chromium (VI) was followed pseudo-first-order equation, and the reduction rate could be expressed as Kobs = k [H2SO4]1• [j] 4•exp-4170/RT.


2011 ◽  
Vol 383-390 ◽  
pp. 2945-2950 ◽  
Author(s):  
Jie Zhang ◽  
Shi Long He ◽  
Mei Feng Hou ◽  
Li Ping Wang ◽  
Li Jiang Tian

The kinetics of TBBPA degradation by ozonation in semi-batch reactor was studied. The reaction rate constants of TBBPA with O3 and •OH were measured by means of direct ozone attack and competition kinetics, and the values of which were 6.10 l/(mol•s), 4.8×109 l/(mol•s), respectively. Results of kinetic studies showed that TBBPA degradation by ozonation under the different conditions tested followed the pseudo-first-order. The values of apparent rate constant of TBBPA degradation increased with the increase of ozone dosage and pH, but decreased with the increase of initial TBBPA concentration.


1996 ◽  
Vol 34 (9) ◽  
pp. 41-48 ◽  
Author(s):  
Jih-Gaw Lin ◽  
Cheng-Nan Chang ◽  
Jer-Ren Wu ◽  
Ying-Shih Ma

We investigated the effects of pH, ionic strength, catalyst, and initial concentration on both decomposition of 2-chlorophenol (2-cp) and removal of total organic carbon (TOC) in aqueous solution with ultrasonic amplitude 120 μm and H2O2 (200 mg/l). When the initial concentrations of 2-cp was 100 mg/l and the pH was controlled at 3, the rate of 2-cp decomposition was enhanced up to 6.6-fold and TOC removal up to 9.8-fold over pH controlled at 11. At pH 3, the efficiency of decomposition of 2-cp was 99% but the removal of TOC was only 63%; a similar situation applied at pH 7 and 11. Hence intermediate compounds were produced and 2-cp was not completely mineralized. When the concentration of ionic strength was increased from 0.001 to 0.1 M, the rate of 2-cp decomposition was enhanced only 0.3-fold, whereas the TOC removal was not enhanced. In comparison of the effects of pH and ionic strength, pH had greater influence on both 2-cp decomposition and TOC removal than ionic strength. The effect of a catalyst (FeSO4) on decomposition of 2-cp was insignificant comparing with direct addition of H2O2. The reaction rate at a smaller initial concentration of 2-cp (10 mg/l) was more rapid than at a greater one (100 mg/l). The rate of 2-cp decomposition and TOC removal appeared to follow pseudo-first-order reaction kinetics.


2019 ◽  
Vol 4 (12) ◽  
pp. 78-85
Author(s):  
Aboiyaa A. Ekine ◽  
Patience N. Ikenyiri ◽  
O. Hezekiah-Braye

This Research investigated the adsorption capacity of locally prepared adsorbents from Egg shells for the removal of fluoride ion in well water. It evaluated the performance of these adsorbents calcinated at 3000C and modified with 1.0M HNO3 (trioxonitrate (v)) acid. Batch adsorber was used to allow for interaction between adsorbent (grounded Egg shells) with water containing fluoride ion. The batch experiment was performed with particle size of 2.12 contact time (60, 120, 180, 240, 300min), mass dosage (5g, 10g, 15g, 20g) and temperature (250C, 300C, 400C, 500C). The modified adsorbent was characterized to determine the physiochemical properties of grounded Egg shells (GE). Also the chemical composition of the modified adsorbent was analyzed to determine the percentage of calcium element required for the uptake of the fluoride ions in water for calcium as 39.68% for grounded Egg shells (GE). Percentage adsorption increased with increase in contact time, mass dosage and temperature for the adsorbent. The adsorption capacity was also determined which also increased with increase in contact time, temperature but decreased with increase in mass dosage at constant time of 60minutes. The pseudo first-order, pseudo second order and intraparticle diffusion kinetic models were fitted into the experimental results. The results obtained indicated that the pseudo first order and intraparticle diffusion models for the grounded Egg shells (GE) reasonably described the adsorption process very well whereas the pseudo second order model was not suitable for a calcinations temperature of 3000C and particle size of 2.12m. The adsorption isotherms were obtained from equilibrium experiment Performed at temperature of 25, 35, 45 and 550C. The result showed that Langmuir and Freundlich isotherm fitted perfectly the experimental data. However, the negative values of Gibb’s free energy indicated that adsorption was favourable and the positive enthalpy change H0 revealed that adsorption process was endothermic while the positive value of the entropy change signified increased randomness with adsorption.


2007 ◽  
Vol 54 (2) ◽  
pp. 371-377
Author(s):  
Radosława Kuciel ◽  
Aleksandra Mazurkiewicz ◽  
Paulina Dudzik

Kinetics of guanidine hydrochloride (GdnHCl)-induced unfolding of human prostatic acid phosphatase (hPAP), a homodimer of 50 kDa subunit molecular mass was investigated with enzyme activity measurements, capacity for binding an external hydrophobic probe, 1-anilinonaphtalene-8-sulfonate (ANS), accessibility of thiols to reaction with 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) and 2-(4'-maleimidylanilino)naphthalene-6-sulfonate (MIANS) and ability to bind Congo red dye. Kinetic analysis was performed to describe a possible mechanism of hPAP unfolding and dissociation that leads to generation of an inactive monomeric intermediate that resembles, in solution of 1.25 M GdnHCl pH 7.5, at 20 degrees C, in equilibrium, a molten globule state. The reaction of hPAP inactivation in 1.25 M GdnHCl followed first order kinetics with the reaction rate constant 0.0715 +/- 0.0024 min(-1) . The rate constants of similar range were found for the pseudo-first-order reactions of ANS and Congo red binding: 0.0366 +/- 0.0018 min(-1) and 0.0409 +/- 0.0052 min(-1), respectively. Free thiol groups, inaccessible in the native protein, were gradually becoming, with the progress of unfolding, exposed for the reactions with DTNB and MIANS, with the pseudo-first-order reaction rate constants 0.327 +/- 0.014 min(-1) and 0.216 +/- 0.010 min(-1), respectively. The data indicated that in the course of hPAP denaturation exposure of thiol groups to reagents took place faster than the enzyme inactivation and exposure of the protein hydrophobic surface. This suggested the existence of a catalytically active, partially unfolded, but probably dimeric kinetic intermediate in the process of hPAP unfolding. On the other hand, the protein inactivation was accompanied by exposure of a hydrophobic, ANS-binding surface, and with an increased capacity to bind Congo red. Together with previous studies these results suggest that the stability of the catalytically active conformation of the enzyme depends mainly on the dimeric structure of the native hPAP.


2012 ◽  
Vol 19 (1) ◽  
pp. 55-66 ◽  
Author(s):  
Marta Siemieniec ◽  
Hanna Kierzkowska-Pawlak ◽  
Andrzej Chacuk

Reaction Kinetics of Carbon Dioxide in Aqueous Diethanolamine Solutions Using the Stopped-Flow Technique The pseudo-first-order rate constants (kOV) for the reactions between CO2 and diethanolamine have been studied using the stopped-flow technique in an aqueous solution at 293, 298, 303 and 313 K. The amine concentrations ranged from 167 to 500 mol·m-3. The overall reaction rate constant was found to increase with amine concentration and temperature. Both the zwitterion and termolecular mechanisms were applied to correlate the experimentally obtained rate constants. The values of SSE quality index showed a good agreement between the experimental data and the corresponding fit by the use of both mechanisms.


1988 ◽  
Vol 249 (3) ◽  
pp. 891-896 ◽  
Author(s):  
J P Tahon ◽  
D Van Hoof ◽  
C Vinckier ◽  
R Witters ◽  
M De Ley ◽  
...  

The reaction of nitrite at pH 5.7 with deoxyhaemocyanin of Astacus leptodactylus yielded methaemocyanin in two one-electron steps, as nitrite was reduced to NO. This methaemocyanin could be almost fully regenerated by an anaerobic treatment with HONH2, in contrast with the methaemocyanin prepared with H2O2. A destruction of active sites on treating oxyhaemocyanin with HONH2 explains the partial regeneration of methaemocyanin under air, as traces of H2O2 are formed in the autoxidation of HONH2. The reaction rate of nitrite with deoxyhaemocyanin is almost 15 times that with oxyhaemocyanin. The slope of -1.0 for the logarithm of the pseudo-first-order rate constants plotted against pH indicates that HNO2 is the reacting species. Methaemocyanin was e.p.r.-undetectable, but a binuclear signal was observed at g = 2 on binding nitrite to methaemocyanin. This signal disappeared with a pKa of 6.50, suggesting that a mu-aquo bridging ligand, which can be replaced by nitrite, is deprotonated to a mu-hydroxo bridging ligand, which resists substitution by nitrite. The intensity of this triplet e.p.r. signal allowed the determination of the association constant of nitrite to the active site of Astacus methaemocyanin and yielded a value of 237 M-1 at pH 5.7. The interpretation by some authors of nitrosylhaemocyanin as a nitrite derivative of semimethaemocyanin is contradicted by this rapid reaction of nitrite with copper(I) in deoxyhaemocyanin and in semi-methaemocyanin and by the low binding constant of nitrite to the active site of methaemocyanin.


2011 ◽  
Vol 239-242 ◽  
pp. 182-185 ◽  
Author(s):  
Ying Jie Zhang ◽  
Guo Rui Liu ◽  
Da Peng Li ◽  
Yue Xiao Tian ◽  
Li Zhang ◽  
...  

Solid super acid (S2O82-/FexOy-CuOx) was prepared and used as a heterogeneous Fenton-like catalyst to decompose H2O2for the degradation of refractory dye Orange IV in water. The factors that affected the degradation of Orange IV were discussed in this heterogeneous Fenton-like system. The catalytic activity of S2O82-/FexOy-CuOxwas evaluated by the degradation of Orange IV and the decomposition of H2O2. The results show that the catalyst S2O82-/FexOy-CuOxhas a good catalytic activity. The reaction follows pseudo-first-order kinetics; the reaction rate constant has a good relationship with the concentration of H2O2. The degradation rate of Orange IV and the decomposition rate of H2O2increase with the increase of temperature and the dosage of catalyst whereas it decreases with the increase of the initial concentration of Orange IV and the initial pH.


Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1169 ◽  
Author(s):  
Anas Iben Ayad ◽  
Denis Luart ◽  
Aissa Ould Dris ◽  
Erwann Guénin

The most important model catalytic reaction to test the catalytic activity of metal nanoparticles is the reduction of 4-nitrophenol to 4-aminophenol by sodium borohydride as it can be precisely monitored by UV–vis spectroscopy with high accuracy. This work presents the catalytic reduction of 4-nitrophenol (4-Nip) to 4-aminophenol (4-Amp) in the presence of Pd nanoparticles and sodium borohydride as reductants in water. We first evaluate the kinetics using classical pseudo first-order kinetics. We report the effects of different initial 4-Nip and NaBH4 concentrations, reaction temperatures, and mass of Pd nanoparticles used for catalytic reduction. The thermodynamic parameters (activation energy, enthalpy, and entropy) were also determined. Results show that the kinetics are highly dependent on the reactant ratio and that pseudo first-order simplification is not always fit to describe the kinetics of the reaction. Assuming that all steps of this reaction proceed only on the surface of Pd nanoparticles, we applied a Langmuir−Hinshelwood model to describe the kinetics of the reaction. Experimental data of the decay rate of 4-nitrophenol were successfully fitted to the theoretical values obtained from the Langmuir–Hinshelwood model and all thermodynamic parameters, the true rate constant k, as well as the adsorption constants of 4-Nip, and BH4− (K4-Nip and KBH4−) were determined for each temperature.


Sign in / Sign up

Export Citation Format

Share Document