scholarly journals Fabrication of β-cyclodextrin modified mesostructured silica coated multi-walled carbon nanotubes composites and application for paraben removal

2018 ◽  
Vol 78 (5) ◽  
pp. 1001-1009 ◽  
Author(s):  
Chuyuan Ding ◽  
Jun He ◽  
Mengxia Xu ◽  
Chengjun Wang

Abstract In this work, the novel β-cyclodextrin modified mesostructured silica coated multi-walled carbon nanotubes (MWCNTs) composites were synthesized and applied for the removal of parabens in aqueous solution. The prepared MWCNTs/SiO2/β-CD composites were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy and thermogravimetric analysis. The effects of the amount of adsorbent, pH and elution solvents on the removal efficiency of parabens from water solutions were investigated. Under the optimized conditions, over 95% removal efficiency was achieved by using 40 mg of MWCNTs/SiO2/β-CD adsorbents to absorb the parabens from 60 mL of 0.5 μg/mL parabens solutions. The solution pH in the range from 5 to 9 has no influence on the removal efficiency and the parabens sorption capacity of the prepared adsorbents were around 0.75 μg/mg. Furthermore, the stability and reusability studies demonstrated that the prepared MWCNTs/SiO2/β-CD composites are cost-effective adsorbents for the removal of parabens from water with high regeneration efficiency. The composites fabricated in this study could become an attractive candidate for water purification.

2020 ◽  
Vol 9 (1) ◽  
pp. 93-104
Author(s):  
Mingrui Du ◽  
Yuan Gao ◽  
Guansheng Han ◽  
Luan Li ◽  
Hongwen Jing

AbstractMulti-walled carbon nanotubes (MWCNTs) have been added in the plain cementitious materials to manufacture composites with the higher mechanical properties and smart behavior. The uniform distributions of MWCNTs is critical to obtain the desired enhancing effect, which, however, is challenged by the high ionic strength of the cement pore solution. Here, the effects of methylcellulose (MC) on stabilizing the dispersion of MWCNTs in the simulated cement pore solution and the viscosity of MWCNT suspensions werestudied. Further observations on the distributions of MWCNTs in the ternary cementitious composites were conducted. The results showed that MC forms a membranous envelope surrounding MWCNTs, which inhibits the adsorption of cations and maintains the steric repulsion between MWCNTs; thus, the stability of MWCNT dispersion in cement-based composites is improved. MC can also work as a viscosity adjuster that retards the Brownian mobility of MWCNTs, reducing their re-agglomerate within a period. MC with an addition ratio of 0.018 wt.% is suggested to achieve the optimum dispersion stabilizing effect. The findings here provide a way for stabilizing the other dispersed nano-additives in the cementitious composites.


2009 ◽  
Vol 60-61 ◽  
pp. 394-398 ◽  
Author(s):  
Gen Sheng Wu ◽  
Jue Kuan Yang ◽  
Shu Lin Ge ◽  
Yu Juan Wang ◽  
Min Hua Chen ◽  
...  

The stable and homogeneneous aqueous suspension of carbon nanotubes was prepared in this study. The stability of the nanofluids was improved greatly due to the use of a new dispersant, humic acid. The thermal conductivity of the aqueous suspension was measured with the 3ω method. The experimental results showed that the thermal conductivity of the suspensions increases with the temperature and also is nearly proportional to the loading of the nanoparticles. The thermal conductivity enhancement of single-walled carbon nanotubes (SWNTs) suspensions is better than that of the multi-walled carbon nanotubes (MWNTs) suspensions. Especially for a volume fraction of 0.3846% SWNTs, the thermal conductivity is enhanced by 40.5%. Furthermore, the results at 30°C match well with Jang and Choi’s model.


Biomimetics ◽  
2020 ◽  
Vol 5 (3) ◽  
pp. 43
Author(s):  
Athanasios Kotrotsos ◽  
Prokopis Yiallouros ◽  
Vassilis Kostopoulos

The solution electrospinning process (SEP) is a cost-effective technique in which a wide range of polymeric materials can be electrospun. Electrospun materials can also be easily modified during the solution preparation process (prior SEP). Based on this, the aim of the current work is the fabrication and nanomodification of scaffolds using SEP, and the investigation of their porosity and physical and mechanical properties. In this study, polylactic acid (PLA) was selected for scaffold fabrication, and further modified with multi-walled carbon nanotubes (MWCNTs) and hydroxyapatite (HAP) nanoparticles. After fabrication, porosity calculation and physical and mechanical characterization for all scaffold types were conducted. More precisely, the morphology of the fibers (in terms of fiber diameter), the surface properties (in terms of contact angle) and the mechanical properties under the tensile mode of the fabricated scaffolds have been investigated and further compared against pristine PLA scaffolds (without nanofillers). Finally, the scaffold with the optimal properties was proposed as the candidate material for potential future cell culturing.


Polymers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 673
Author(s):  
Heba M. Hashem ◽  
Saad S. M. Hassan ◽  
Ayman H. Kamel ◽  
Abd El-Galil E. Amr ◽  
E. M. AbdelBary

A simple, efficient and reliable analytical method was developed and used for the determination of the fluvoxamine drug (FLV) in pharmaceutical preparations and biological fluids. The method is based on the cost-effective screen-printed platform for the potential transduction of the drug. Host-tailored molecular imprinting polymer (MIP) was integrated with the potentiometric platform as a recognition receptor, in which FLV, acrylamide (AAm), ethylene glycol dimethacrylate (EGDMA) and acetonitrile were used as a template, functional monomer, cross-linker, and solvent, respectively. MIP particles were dispersed in plasticized poly (vinyl chloride) (PVC) and the membrane was drop-casted on carbon screen-printed electrode. The MIP, in addition to non-imprinted polymers (NIP), was characterized and the binding experiment revealed high affinity and adsorption capacity of MIP towards FLV. The proposed sensor displayed near-Nernstian cationic slope of 55.0 ± 0.8 mV/decade (r2 = 0.999) with a low detection limit of 4.8 × 10−6 mol/L over a wide pH range (3.0–8.5). The electrochemical features of the proposed sensors including electrochemical impedance spectroscopy (EIS) and chronopotentiometry measurements (CP) in the presence of multi-walled carbon nanotubes (MWCNTs) as a solid contact transducer were also investigated. The applications of the proposed sensor for the determination of FLV in different dosage forms with recovery values (98.8%–101.9%) and (97.4%–101.1%), respectively compared with the reference HPLC method with acceptedFandt-student tests values at the 95% confidence level.


2019 ◽  
Vol 7 (45) ◽  
pp. 14306-14313 ◽  
Author(s):  
Yu Lu ◽  
Xueping Zong ◽  
Yilei Wang ◽  
Wenhua Zhang ◽  
Quanping Wu ◽  
...  

A new promising strategy to improve the stability of inverted perovskite solar cells is reported.


Author(s):  
Mohsen Asghari ◽  
Jacob Rafati

The nonlocal continuum theories are capable to reflect the small length characteristic of nanostructures. In this work, variational principles are presented for the stability analysis of multi-walled carbon nanotubes under various mechanical loadings based on the nonlocal elastic Donnell’s shell by the semi-inverse method. In this manner, a set of proper essential and natural boundary conditions for each layer of the multi-walled nanotube is derived.


2015 ◽  
Vol 71 (9) ◽  
pp. 1367-1374 ◽  
Author(s):  
Mahmoud Reza Sohrabi ◽  
Nafiseh Mansouriieh ◽  
Morteza Khosravi ◽  
Mohsen Zolghadr

The present study immobilized nanoscale zero-valent iron (nZVI) on multi-walled carbon nanotubes (MWCNTs) to enhance the reactivity of nZVI and prevent its aggregation. This novel composite (nZVI/MWCNT) was characterized by scanning electron microscopy and X-ray diffraction. The results showed that nZVI particles dispersed on the surface of the MWCNTs. The composite was used to remove the diazo dye Direct Red 23 from aqueous solution. The effects of nZVI to MWCNT mass ratio, nanocomposite content, solution pH, initial dye concentration and temperature were studied. The optimum nZVI/MWCNT mass ratio was 1:3. Batch experiments suggest that degradation efficiency decreased as the initial dye concentration increased and increased as the nanocomposite content increased, decreasing the pH from 8 to 4. The reaction followed a pseudo-first-order model under the operational conditions investigated in this study.


2017 ◽  
Vol 76 (10) ◽  
pp. 2593-2602 ◽  
Author(s):  
Vahid Alimohammadi ◽  
Mehdi Sedighi ◽  
Ehsan Jabbari

Abstract This paper reports a facile method for removal of sulfate from wastewater by magnetic multi-walled carbon nanotubes (MMWCNTs). Multi-walled carbon nanotubes and MMWCNTs were characterized by X-ray diffraction, Raman, transmission electron microscopy, Fourier transform infrared spectroscopy, and vibrating sample magnetometry. The results of the analysis indicated that MMWCNTs were synthesized successfully. The MMWCNTs can be easily manipulated in a magnetic field for the desired separation, leading to the removal of sulfate from wastewater. Response surface methodology (RSM) coupled with central composite design was applied to evaluate the effects of D/C (adsorbent dosage per initial concentration of pollutant (mgadsorbent/(mg/l)initial)) and pH on sulfate removal (%). Using RSM methodology, a quadratic polynomial equation was obtained, for removal of sulfate, by multiple regression analysis. The optimum combination for maximum sulfate removal of 93.28% was pH = 5.96 and D/C = 24.35. The experimental data were evaluated by the Langmuir and Freundlich adsorption models. The adsorption capacity of sulfate in the studied concentration range was 56.94 (mg/g). It was found out that the MMWCNTs could be considered as a promising adsorbent for the removal of sulfate from wastewater.


2010 ◽  
Vol 636-637 ◽  
pp. 714-721 ◽  
Author(s):  
K. Kordatos ◽  
A. Ntziouni ◽  
A. Theodoratou ◽  
Maria Perraki ◽  
M. Terrones ◽  
...  

The present work describes the synthesis of nitrogen doped multi-walled carbon nanotubes (CNx CNT). The chosen production method was the catalytic pyrolysis of a solid mixture containing [Ni(DMG)2] and melamine (C3H6N6), under an Αr atmosphere. A series of various experiments were performed, using different proportions of the reaction mixture, in order to optimize the production conditions of nitrogen doped carbon nanotubes. Finally, the produced materials were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDX), Raman spectroscopy as well as thermogravimetric analysis (TGA). The obtained data from all the above analyses, showed the formation of nitrogen doped carbon nanotubes of various diameters as well as nanofibers surrounded by byproducts such as aggregations of amorphous carbon and metallic catalyst, depending on the proportion of the reaction mixture.


Sign in / Sign up

Export Citation Format

Share Document