scholarly journals Presentation and evaluation of the zero-dimensional biofilm model 0DBFM

2018 ◽  
Vol 79 (1) ◽  
pp. 35-40 ◽  
Author(s):  
Mario Plattes

Abstract A zero-dimensional biofilm model, i.e. 0DBFM, has been developed for dynamic simulation of moving bed bioreactors (MBBRs). This mini-review aims at presenting and evaluating 0DBFM. 0DBFM is presented in Petersen matrix format and is based on the activated sludge model ASM1, which is an explicit and quite complex model (eight processes, 13 state variables, and 19 parameters) that has found wide application in engineering practice. 0DBFM is thus based on existing knowledge in biological wastewater treatment. The ASM1 approach has been confirmed by respirometry since the resulting respirograms were successfully simulated with ASM1. 0DBFM distinguishes between attached and suspended biomass and incorporates attachment of suspended matter from the bulk liquid onto the biofilm and detachment of biofilm into the bulk liquid. Still, 0DBFM respects the golden rule of modelling, which says that ‘models should be as simple as possible and as complex as needed’ and resists Occam's razor. The practicability of 0DBFM has been shown on a pilot-scale plant since nine days of wastewater treatment were successfully simulated and effluent quality was dynamically predicted. Finally, 0DBFM can be inspiring and the applicability of 0DBFM to other biofilm systems can be tested.

1990 ◽  
Vol 22 (7-8) ◽  
pp. 225-232
Author(s):  
G. Petersen

The upgrading of an existing mechanical wastewater treatment plant to meet the new standards for effluent quality in the Municipality of Fredericia, Denmark, are presented. The Municipality has a lot of very big organic and inorganic industries, which leaves several different possibilities for treatment strategies. In 1987 pilot-scale tests were carried out to study the effects of various combinations of wastewater types on the treatment efficiency, and the tests resulted in two main solutions for the wastewater treatment system. The pilot-scale tests were run in a two - stage biology plant. The first stage was either a BIOSORPTION unit or a PRE-DENITRIFICATION unit. The second stage was a biological nitrogen and phosphorus removal unit (a BIO-DENIPHO unit).


2011 ◽  
Vol 365 ◽  
pp. 361-366
Author(s):  
Mei Yan Xing ◽  
Ya Nan Lin ◽  
Hao Wang ◽  
Jian Yang ◽  
Zhi Dong Huang

A Pilot-scale study was conducted to treat municipal wastewater by Biological-Ecological filter (BEF), which is composed by anaerobic hydrolysis pool (AHP), high load biological filter (BF) and vermifilter (VF). The results demonstrated that when the influent concentrations of COD and NH3-N were in the range of 190~300 mg/L and 25~35 mg/L, respectively, the effluent concentration of them ranged from 45 to 65 mg/L and 8 to 20 mg/L with the average removal efficiency of 73.6% and 50%, respectively. Meanwhile, the effluent average SS concentration was less than 15 mg/L. The effluent quality could steadily meet the second level criteria specified in Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant (GB 18918-2002) in China. The removal performance of fine zeolite was significantly better than the coarse one and heightening packing layer had little effect on the removal of COD and NH3-N. This study verified that BEF system for municipal wastewater treatment was feasible.


Membranes ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 456
Author(s):  
Sabrina Ng Muhamad Ng ◽  
Syazwani Idrus ◽  
Amimul Ahsan ◽  
Tuan Nurfarhana Tuan Mohd Marzuki ◽  
Siti Baizura Mahat

This study compares the performance of the Hollow Fiber (HF) and Flat Sheet (FS) types of membrane bioreactors (MBRs) for the treatment of food and beverage (F&B) industry wastewater in a pilot-scale study of a wastewater treatment plant (WWTP). HF and FS membrane configurations were evaluated at two different Mixed Liquor Suspended Solid (MLSS) levels: 6000 mg/L and 12,000 mg/L. The performance of each configuration was evaluated in terms of Chemical Oxygen Demand (COD) and Total Suspended Solid (TSS) removals for effluent quality measurement. The transmembrane pressure (TMP), flux rate, and silt density index (SDI) were monitored and calculated for membrane fouling assessment. The results show that the rejection rates of COD and TSS for HF and FS membrane types were more than 84% for the two different MLSS levels. During the study, the HF membrane recorded 0.3 bar transmembrane pressure, which complies with the recommended range (i.e., two to three times of chemical cleaning). On the other hand, the FS membrane operates without chemical cleaning, and the TMP value was below the recommended range at 0.2 bar. It was found that the flux values recorded for both the HF and FS systems were within the recommended range of 40 L/m2/h. Analysis of SDI revealed that the calculated index ranged between 1 and 2.38 and was within the allowable limit of 3. Both types of MBR consistently achieved an 80% to 95% rejection rate of COD and TSS. Effluent quality measurement of treated F&B wastewater in this pilot-scale study using a WWTP integrated with an MBR indicated a good achievement with compliance with the Malaysia industrial effluent discharge standards.


2007 ◽  
Vol 55 (8-9) ◽  
pp. 309-316 ◽  
Author(s):  
M. Plattes ◽  
D. Fiorelli ◽  
S. Gillé ◽  
C. Girard ◽  
E. Henry ◽  
...  

A model for the simulation of a moving bed bioreactor (MBBR) used for the treatment of municipal wastewater is proposed. The model includes attachment of particulates to the biofilm and detachment of biofilm into the bulk liquid. The growth kinetics are modelled with the activated sludge model no. 1 (ASM1). Respirometry was used for the estimation of kinetic parameters. The resulting respirograms featured the typical endogenous and exogenous respiration phases and the respirogram shapes were as expected from analogous respirometry with activated sludge. The estimated parameter set was used for modelling and simulation of the pilot-scale MBBR. The main proportion of biomass in the MBBR was found to be attached as biofilm on the carrier elements (4.1–4.6 g dm−3) and only a small amount was suspended in the bulk liquid (0.15 g dm−3). Attachment and detachment rates were estimated to be 4.8–7.5 g m−2 d−1 for attachment and 6.5–7.5 g m−2 d−1 for detachment. The biofilm age was estimated to be 1.8–2.7 d. The model was used to predict effluent quality parameters and a good fit of the simulated data to the measured data originating from a four-days-long measurement campaign was obtained.


2018 ◽  
Vol 68 (12) ◽  
pp. 2752-2755
Author(s):  
Carmen Tociu ◽  
Tania Zaharia ◽  
Elena Diacu ◽  
Cristina Maria ◽  
Florica Marinescu ◽  
...  

This paper depicts the research conducted at a micro-pilot scale on autochthonous cultures in order to develop adequate technological solutions for the treatment of wastewater resulting from shrimp cultures (Palaemonidae) that would ensure the protection of the Black Sea ecosystem and constitute an applicable tool for the development of aquaculture in Romania. The proposed objectives were attained by adopting an integrated system of marine cultures shrimps-mussels-macrophyte algae, followed by a conventional chemical treatment step using aluminium sulphate recovered from metallurgical slags. This system together with wastewater treatment ensures an optimum development of species and a minimum load of pollutants in the aquatic environment.


1990 ◽  
Vol 22 (3-4) ◽  
pp. 65-72 ◽  
Author(s):  
H.-H. Schierup ◽  
H. Brix

Since 1983 approximately 150 full-scale emergent hydrophyte based wastewater treatment plants (reed beds) have been constructed in Denmark to serve small wastewater producers. The development of purification performance for 21 plants representing different soil types, vegetation, and hydraulic loading rates has been recorded. Cleaning efficiencies were typically in the range of 60-80% reduction for BOD, 25-50% reduction for total nitrogen, and 20-40% reduction for total phosphorus. The mean effluent BOD, total nitrogen and total phosphorus concentrations of the reed beds were 19 ± 10, 22 ± 9 and 6.7 ± 3.2 mg/l (mean ± SD), respectively. Thus, the general Danish effluent standards of 8 mg/l for N and 1.5 mg/l for P for sewage plants greater than 5,000 PE cannot be met by the present realised design of EHTS. The main problem observed in most systems is a poor development of horizontal hydraulic conductivity in the soil which results in surface run-off. Since the political demands for effluent quality will be more strict in the future, it is important to improve the performance of small decentral sewage treatment plants. On the basis of experiences from different types of macrophyte based and conventional low-technology wastewater treatment systems, a multi-stage system is suggested, consisting of sedimentation and sand filtration facilities followed by basins planted with emergent and submergent species of macrophytes and algal ponds.


1996 ◽  
Vol 33 (1) ◽  
pp. 81-87
Author(s):  
L. Van Vooren ◽  
P. Willems ◽  
J. P. Ottoy ◽  
G. C. Vansteenkiste ◽  
W. Verstraete

The use of an automatic on-line titration unit for monitoring the effluent quality of wastewater plants is presented. Buffer capacity curves of different effluent types were studied and validation results are presented for both domestic and industrial full-scale wastewater treatment plants. Ammonium and ortho-phosphate monitoring of the effluent were established by using a simple titration device, connected to a data-interpretation unit. The use of this sensor as the activator of an effluent quality proportional sampler is discussed.


1993 ◽  
Vol 28 (10) ◽  
pp. 33-41
Author(s):  
Jes la Cour Jansen ◽  
Bodil Mose Pedersen ◽  
Erik Moldt

Influent and effluent data from about 120 small wastewater treatment plants (100 - 2000 PE) have been collected and processed. Seven different types of plants are represented. The effluent quality and the treatment efficiency have been evaluated. The most common type of plant is mechanical/biological treatment plants. Some of them are nitrifying and some are also extended for chemical precipitation of phosphorus. Constructed wetlands and biological sandfilters are also represented among the small wastewater treatment plants.


1996 ◽  
Vol 33 (7) ◽  
pp. 165-171 ◽  
Author(s):  
J. Soares ◽  
S. A. Silva ◽  
R. de Oliveira ◽  
A. L. C. Araujo ◽  
D. D. Mara ◽  
...  

Ammonia removal was monitored in a waste stabilisation pond complex comprising ponds of different geometries and depths under two different operational regimes. It was found that a high degree of ammonia removal commenced in the secondary maturation ponds, with the highest removals occurring in the shallowest ponds as a consequence of improved aerobic conditions. The tertiary maturation ponds produced effluents with mean ammonia concentrations of < 5 mg N/l, the maximum permitted recommended by Brazilian environmental legislation for the discharge of effluents of wastewater treatment plants into surface waters. Ammonia removal in the secondary facultative and maturation ponds could be modelled using equations based on the volatilization mechanism proposed by Middlebrooks et al. (1982).


Sign in / Sign up

Export Citation Format

Share Document