scholarly journals Electrochemical oxidation for decolorization of Rhodamine-B dye using mixed metal oxide electrode: modeling and optimization

2020 ◽  
Vol 81 (4) ◽  
pp. 720-731
Author(s):  
Manisha S. Kothari ◽  
Kosha A. Shah

Abstract In the study the electrochemical oxidation process for decolorization of Rhodamine-B dye was studied using an anode coated with mixed metal oxides: TiO2, RuO2, and IrO2. Batch experimental studies were conducted to assess the effect of four important performance variables, current density, electrolyte concentration, initial pH and electrolysis time, on the decolorization and energy consumption. The process was modeled using an artificial neural network. Response surface methodology using central composite design (CCD) was utilized for optimization of the decolorization process. Based on the experimental design given by CCD, the results obtained by the statistical analysis show that the electrolysis time was the most influential parameter for decolorization whereas the current density had the greatest influence on the energy consumption. According to the optimized results given by the CCD model, maximum color removal of 97% and minimum energy consumption of 1.01 kWh/m3 were predicted in 4.9 minute of electrolysis time, using 0.031 M NaCl concentration at current density 10 mA/cm2 and an initial pH of 3.7. A close conformity was observed between the optimized predicted results and experimental results. The process was found to be efficient and consisted of indirect chemical oxidation producing strong oxidizing agents such as Cl2, HClO and OCl−.

2012 ◽  
Vol 441 ◽  
pp. 555-558
Author(s):  
Feng Tao Chen ◽  
San Chuan Yu ◽  
Xing Qiong Mu ◽  
Shi Shen Zhang

The Ti/SnO2-Sb2O3/PbO2 electrodes were prepared by thermal decomposition method and its application in the electrochemical degradation of a heteropolyaromatic dye, Methylene blue (MB), contained in simulated dye wastewater were investigated under mild conditions. The effects of pH, current density and electrolysis time on de-colorization efficiency were also studied. Chemical oxygen demand (COD) was selected as another parameter to evaluate the efficiency of this degradation method on treatment of MB wastewater. The results revealed that when initial pH was 6.0, current density was 50 mA·cm2, electrolysis time was 60 min, Na2SO4 as electrolyte and its concentration was 3.0 g·dm3, the de-colorization and COD removal efficiency can reach 89.9% and 71.7%, respectively.


2019 ◽  
Vol 80 (7) ◽  
pp. 1326-1337 ◽  
Author(s):  
Tran Le Luu ◽  
Djeuga Djeuga Franck Stephane ◽  
Nguyen Hoang Minh ◽  
Nguyen Duc Canh ◽  
Bui Xuan Thanh

Abstract Tannery wastewater is known to contain high concentrations of organic compounds, heavy metals, nitrogen, sulphur, chromium, and many other chemicals. Both aerobic and anaerobic biological approaches have proven ineffective in the treatment of tannery wastewater due to the high salinity and toxic chemicals contained within the medium. Electrochemical oxidation presents a promising method for solving this problem. High pollutant removal efficiency, low energy consumption, and high electrode stability are three important factors supporting the feasibility of an efficient electrochemical treatment process. In the present study, electrochemical oxidation was performed as a post treatment for tannery wastewater (after biological pre-treatment) in a batch reactor using Ti/RuO2, Ti/IrO2, and Ti/BDD anodes. The effects of pH, current density, stirring rate and treatment time were studied to assess the treatment efficiency as well as the energy consumption of the process. The results showed that colour, chemical oxygen demand (COD), total organic carbon (TOC), and total nitrogen (TN) removal efficiencies on the electrodes were: Ti/RuO2 (88.8%, 88.40%, 64.0%, 96.4%), Ti/IrO2 (85.40%, 85.9%, 52.3%, 51.4%), Ti/BDD (90.60%, 94.7%, 90.5%, 82.7%) respectively, at a current density of 80 mA/cm2. All three electrodes demonstrated optimal performance at a pH of 8, a stirring rate of 400 rpm, a current density of 80 mA/cm2, and an electrolysis time of 5 h. The concentration of tri-chloromethane by-product was detected with limiting value. Electrochemical oxidation thus offers a feasible method for removing organic compounds and nutrients from tannery wastewater.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Ali Baddouh ◽  
Brahim El Ibrahimi ◽  
Elhassan Amaterz ◽  
M. Mohamed Rguiti ◽  
Lahcen Bazzi ◽  
...  

The electrochemical oxidation of the Rhodamine B dye (Rh-B) was carried out using dimensionally stable type anode (DSA, Ti/Ru0.3Ti0.7O2). The work was performed using the electrochemical flow cell system. The effect of several operating factors, such as supporting electrolytes, current density, electrolysis time, temperature, and initial concentration of Rh-B dye, were investigated. The UV-visible spectroscopy and chemical oxygen demand (COD) measurements were conducted to monitor the removal and degradation of Rh-B. The best color removal achieved was found to be 98.3% after 10 min applying 3.9 mA·cm−2 as a current density using 0.07 mol·L−1 of NaCl. Meanwhile, the highest COD removal rate (93.0%) was obtained for an applied current density of 3.9 mA·cm−2 as the optimal operating condition after 180 min reaction time, with 2.98 kW h·m−3 as energy consumption. This shows that the best conditions for color removal are not certainly the same as those for the COD removal. The rises in the concentration of NaCl, and applied current increased the Rh-B color removal rate. The decline in Rh-B dye concentration followed pseudo-first-order kinetics. The obtained values of apparent rate constant were increased by increasing chloride ion concentration. It is concluded that the electro-oxidation on DSA electrode using a flow cell is a suitable process for the removal of Rh-B dye in aqueous solutions.


2014 ◽  
Vol 567 ◽  
pp. 44-49 ◽  
Author(s):  
Gan Chin Heng ◽  
Mohamed Hasnain Isa

Electrochemical process is one of the most effective methods to enhance sludge disintegration. In this study, Ti/RuO2 anodes were prepared by Pechini’s method and the electrode surface morphology was characterized by FESEM and EDAX. The effects of various operating conditions were investigated including initial pH value of sludge, sludge concentration, electrolysis time and current density. The study showed that the removal efficiencies of TS, VS, TSS and VSS increased with the increase of pH in the alkaline range, electrolysis time and current density but decreased with the increase of initial sludge concentration. The application of electrochemical process using Ti/RuO2 electrodes enhanced the sludge disintegration for possible subsequent biological treatment.


2017 ◽  
Vol 19 (2) ◽  
pp. 67-71 ◽  
Author(s):  
Ha Manh Bui

Abstract The COD removal efficiency from an instant coffee processing wastewater using electrocoagulation was investigated. For this purpose, the response surface methodology was employed, using central composing design to optimize three of the most important operating variables, i.e., electrolysis time, current density and initial pH. The results based upon statistical analysis showed that the quadratic models for COD removal were significant at very low probability value (<0.0001) and high coefficient of determination (R2 = 0.9621) value. The statistical results also indicated that all the three variables and the interaction between initial pH and electrolysis time were significant on COD abatement. The maximum predicted COD removal using the response function reached 93.3% with electrolysis time of 10 min, current density of 108.3 A/m2 and initial pH of 7.0, respectively. The removal efficiency value was agreed well with the experimental value of COD removal (90.4%) under the optimum conditions.


2009 ◽  
Vol 60 (11) ◽  
pp. 2929-2938 ◽  
Author(s):  
Xiang-yong Zheng ◽  
Hai-Nan Kong ◽  
De-yi Wu ◽  
Chong Wang ◽  
Yan Li ◽  
...  

The aim of this study was to investigate the effects of current density, gap between electrodes, urine dosage, dilution and hydrolysis on phosphate removal from human urine by electrocoagulation technique using iron as electrodes. It was shown that, although a high current density and a long electrolysis time favored the removal of phosphate, an appropriate value for these two parameters can be obtained by taking into account the consumption of energy and iron in addition to P removal. In this study, current density 40 mA/cm2 and electrolysis time 20 min were shown to be optimal for 1.0 L pure urine to achieve nearly a complete removal (98%) efficiency of phosphate under the conditions of electrode area 160 cm2, the stirring speed 150 rpm, and the gap between electrodes 5 mm. Increase of gap between electrodes had little effect on phosphate removal, although it increased the energy consumption dramatically. The use of a high urine dosage reduced the efficiency of phosphate removal but increased the amount of removed phosphate. When pure urine was diluted with tap water, use of a higher tap water proportion for dilution expedited the electrolysis to achieve a nearly complete removal of phosphate in solution, but dilution caused the increase in energy consumption. It was also revealed that the hydrolysis of urine prior to electrocoagulation treatment impeded phosphate removal.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Alejandra de la Luz-Pedro ◽  
Efraín F. Martínez Prior ◽  
M. H. López-Araiza ◽  
S. Jaime-Ferrer ◽  
A. Estrada-Monje ◽  
...  

The removal of chemical oxygen demand (COD), total organic carbon (TOC), turbidity, and chromium content from tannery wastewater at different stages of the process was experimentally investigated using electrocoagulation (EC) with iron and aluminium electrodes. In the EC of the beamhouse wastewater (S1), the effects of initial pH and current density were analyzed and electrical energy consumption was determined. The COD and TOC in the solution were effectively removed, with an initial pH 7.0, using either metallic electrode. With a current density of 28 mA/cm2 for an electrolysis procedure of 60 minutes, the removal efficiency of COD and TOC was 72% and 57% with aluminium electrodes and 69% and 60% with iron electrodes, respectively. The minimum energy consumption for the highest COD and TOC removal was 0.37 and 0.69 kWh/m3 when employing iron or aluminium electrodes, respectively. At the optimal conditions, removal efficiencies close to 100% for turbidity and chromium content for wastewaters S1-beamhouse, S2-tanning, S3-retanning, and S4-a mixture 1 : 1 : 1 (v/v/v) were achieved. Results show that a pseudosecond-order rate equation provides a good correlation for the removal rate of the parameters. Finally, the results indicate that for tannery wastewater, the EC process does not depend noticeably on the electrode material, but that the stage of the tanning process of wastewater sample has the principal effect on treatment efficiency.


2020 ◽  
Vol 13 (9) ◽  
pp. 2993-3006 ◽  
Author(s):  
Nemanja Martić ◽  
Christian Reller ◽  
Chandra Macauley ◽  
Mario Löffler ◽  
Andreas M. Reichert ◽  
...  

Employing Ag2Cu2O3, a mixed metal oxide, as a template catalyst material for electrochemical reduction of CO enables generation of multi-carbon products with a faradaic efficiency of close to 92%, at a current density of 600 mA cm−2.


2011 ◽  
Vol 45 (16) ◽  
pp. 4951-4959 ◽  
Author(s):  
Arseto Y. Bagastyo ◽  
Jelena Radjenovic ◽  
Yang Mu ◽  
René A. Rozendal ◽  
Damien J. Batstone ◽  
...  

2010 ◽  
Vol 61 (1) ◽  
pp. 181-190 ◽  
Author(s):  
Sukjoon Yoo ◽  
Jeffery S. Hsieh

This study elucidates the feasibility of electrochemical treatment as a water recycling process in the dissolved air flotation (DAF) unit in the food industry. Effects of operation parameters such as current density, electrolysis time, initial pH of effluent, and mixing process were investigated on the removal of COD, TSS, and TDS of the DAF pretreated effluent. An increase of current density enhances the removal rates and reduces the electrolysis time to reach the maximum performance. The initial pH less than 7 and the addition of mixing process were proven to increase the efficiency of EC treatment. About 80% of COD, 100% of TSS, and 60% of TDS were successfully removed at 500 mA current for 1 hour of electrolysis. The final treated effluent was found to meet the discharge standard from the US Environmental Protection Agency. It was concluded that EC process could be effective as an advanced water resourcing technology in the food industry.


Sign in / Sign up

Export Citation Format

Share Document