scholarly journals Nitrous oxide emissions during microalgae-based wastewater treatment: current state of the art and implication for greenhouse gases budgeting

2020 ◽  
Vol 82 (6) ◽  
pp. 1025-1030
Author(s):  
Maxence Plouviez ◽  
Benoit Guieysse

Abstract Microalgae can synthesise the ozone depleting pollutant and greenhouse gas nitrous oxide (N2O). Consequently, significant N2O emissions have been recorded during real wastewater treatment in high rate algal ponds (HRAPs). While data scarcity and variability prevent meaningful assessment, the magnitude reported (0.13–0.57% of the influent nitrogen load) is within the range reported by the Intergovernmental Panel on Climate Change (IPCC) for direct N2O emissions during centralised aerobic wastewater treatment (0.016–4.5% of the influent nitrogen load). Critically, the ability of microalgae to synthesise N2O challenges the IPCC's broad view that bacterial denitrification and nitrification are the only major cause of N2O emissions from wastewater plants and aquatic environments receiving nitrogen from wastewater effluents. Significant N2O emissions have indeed been repeatedly detected from eutrophic water bodies and wastewater discharge contributes to eutrophication via the release of nitrogen and phosphorus. Considering the complex interplays between nitrogen and phosphorus supply, microalgal growth, and microalgal N2O synthesis, further research must urgently seek to better quantify N2O emissions from microalgae-based wastewater systems and eutrophic ecosystems receiving wastewater. This future research will ultimately improve the prediction of N2O emissions from wastewater treatment in national inventories and may therefore affect the prioritisation of mitigation strategies.


2012 ◽  
Vol 3 (2) ◽  
pp. 95-109 ◽  
Author(s):  
P. Winter ◽  
P. Pearce ◽  
K. Colquhoun

This paper describes research that investigated the contribution of nitrous oxide (N2O) emissions from wastewater treatment to the greenhouse gas emissions of a wastewater treatment plant (WWTP). The research provided several months of robust data from a large-scale WWTP serving a population equivalent of 284,000. N2O emissions were monitored online at the ventilation system of a covered activated sludge (AS) plant, therefore capturing the complete off-gas stream. This methodology eliminated errors incurred through sampling of small percentages of emission areas and allowed representative continuous measurements. Nitrogen load and dissolved oxygen (DO) were also monitored. To address seasonal variation, data were recorded in two extensive phases. In addition, three separate 24-hour surveys were conducted. Emissions of CO2, CH4 and N2O associated with treatment were calculated using the UK Water Industry Research carbon accounting workbook. This study measured N2O emissions from the AS process (nitrification and denitrification) equivalent to 17.5% of the annual GHG emissions (tonnes CO2e) from processes at the WWTP. The emissions were within the range of published N2O emissions. The diurnal profiles confirmed literature findings of a trend of increased N2O emissions when the DO decreased. The DO in the high rate zone of the aeration lanes should be kept above 1 mg l−1 to avoid favourable conditions for N2O emissions during nitrification.



2019 ◽  
Vol 44 ◽  
pp. 101670 ◽  
Author(s):  
Maxence Plouviez ◽  
Paul Chambonnière ◽  
Andy Shilton ◽  
Michael A. Packer ◽  
Benoit Guieysse


2008 ◽  
Vol 88 (2) ◽  
pp. 219-227 ◽  
Author(s):  
D L Burton ◽  
Xinhui Li ◽  
C A Grant

Fertilizer nitrogen use is estimated to be a significant source of nitrous oxide (N2O) emissions in western Canada. These estimates are based primarily on modeled data, as there are relatively few studies that provide direct measures of the magnitude of N2O emissions and the influence of N source on N2O emissions. This study examined the influence of nitrogen source (urea, coated urea, urea with urease inhibitor, and anhydrous ammonia), time of application (spring, fall) and method of application (broadcast, banded) on nitrous oxide emissions on two Black Chernozemic soils located near Winnipeg and Brandon Manitoba. The results of this 3-yr study demonstrated consistently that the rate of fertilizer-induced N2O emissions under Manitoba conditions was lower than the emissions estimated using Intergovernmental Panel on Climate Change (IPCC) coefficients. The Winnipeg site tended to have higher overall N2O emissions (1.7 kg N ha-1) and fertilizer-induced emissions (~0.8% of applied N) than did the Brandon site (0.5 kg N ha-1), representing ~0.2% of applied N. N2O emissions in the first year of the study were much higher than in subsequent years. Both the site and year effects likely reflected differences in annual precipitation. The N2O emissions associated with the use of anhydrous ammonia as a fertilizer source were no greater than emissions with urea. Fall application of nitrogen fertilizer tended to result in marginally greater N2O emissions than did spring application, but these differences were neither large nor consistent. Key words: Nitrogen fertilizer, nitrous oxide emissions, nitrate intensity, anhydrous ammonia, urea



Author(s):  
A. Kuokkanen ◽  
K. Blomberg ◽  
A. Mikola ◽  
M. Heinonen

Abstract Nitrous oxide emissions can contribute significantly to the carbon footprint of municipal wastewater treatment plants even though emissions from conventional nitrogen removal processes are assumed to be moderate. An increased risk for high emissions can occur in connection with process disturbances and nitrite (NO2−) accumulation. This work describes the findings at a large municipal wastewater treatment plant where the levels of NO2− in the activated sludge process effluent were spontaneously and strongly increased on several activated sludge lines which was suspected to be due to shortcut nitrogen removal that stabilized for several months. The high NO2− levels were linked to a dramatic increase in nitrous oxide (N2O) emissions. As much as over 20% of the daily influent nitrogen load was emitted as N2O. These observations indicate that highly increased NO2− levels can occur in conventional activated sludge processes and result in high nitrous oxide emissions. They also raise questions concerning the risk of increased greenhouse gas (GHG) emissions of the nitritation-denitritation processes – although the uncontrolled nature of the event described here must be taken into consideration – and underline the importance of continuous monitoring and control of N2O emissions.



Author(s):  
Larissa Coelho Auto Gomes ◽  
Barbara Costa Pereira ◽  
Renato Pereira Ribeiro ◽  
Jaime Lopes da Mota Oliveira

Biological wastewater treatment processes with biological nitrogen removal are potential sources of nitrous oxide (N2O) emissions. It is important to expand knowledge on the controlling factors associated with N2O production, in order to propose emission mitigation strategies. This study therefore sought to identify the parameters that favor nitrite (NO2-) accumulation and its influence on N2O production and emission in an anaerobic/aerobic/anoxic/aerobic sequencing batch reactor with biological nitrogen removal. Even with controlled dissolved oxygen concentrations and oxidation reduction potential, the first aerobic phase promoted only partial nitrification, resulting in NO2- build-up (ranging from 29 to 57%) and consequent N2O generation. The NO2- was not fully consumed in the subsequent anoxic phase, leading to even greater N2O production through partial denitrification. A direct relationship was observed between NO2- accumulation in these phases and N2O production. In the first aerobic phase, the N2O/NO2- ratio varied between 0.5 to 8.5%, while in the anoxic one values ranged between 8.3 and 22.7%. Higher N2O production was therefore noted during the anoxic phase compared to the first aerobic phase. As a result, the highest N2O fluxes occurred in the second aerobic phase, ranging from 706 to 2416 mg N m-2 h-1, as soon as aeration was triggered. Complete nitrification and denitrification promotion in this system was proven to be the key factor to avoid NO2- build-up and, consequently, N2O emissions.



Soil Research ◽  
2018 ◽  
Vol 56 (7) ◽  
pp. 752
Author(s):  
Graeme Schwenke ◽  
Annabelle McPherson

Nitrogen (N) fertiliser inputs for irrigated cotton production are rapidly increasing to support ever-increasing yields, but much of the applied N may be lost as N gases, including nitrous oxide (N2O), via denitrification in medium–heavy clay soils. The addition of a nitrification inhibitor can reduce overall N loss and N2O emissions. Currently, nitrapyrin (2-chloro-6-trichloro methyl pyridine) is the only inhibitor used with anhydrous ammonia (AA), whereas 3,4-dimethyl pyrazole phosphate (DMPP) has potentially greater stability and longevity in soil, but is not compatible with AA. A newly-developed formulation based on DMPP, 3,4-dimethyl pyrazole tetra-methylene sulfone (DMPS), can be direct-injected with AA. We compared N2O emissions from DMPS- and nitrapyrin-treated AA from two Vertosols used for irrigated cotton. At Emerald (Queensland), both inhibitors reduced N2O emitted by 77% over 2 months. At Gunnedah (New South Wales), DMPS was active in the soil for 3 months, reducing N2O by 86%, whereas nitrapyrin activity lasted for 2 months and reduced N2O by 65%. Realising the potential for improved environmental benefits from directly injecting DMPS with AA requires an agronomic benefit justifying its additional cost to the farmer. Future research needs to investigate the potential for reduced N rates when using these inhibitors – without compromising high yields.



Engevista ◽  
2015 ◽  
Vol 17 (3) ◽  
pp. 375 ◽  
Author(s):  
Renato Pereira Ribeiro ◽  
Jaime Lopes da Mota Oliveira ◽  
Débora Cynamon Kligerman ◽  
Renata Barbosa Alvim ◽  
Samara Almeida Andrade ◽  
...  

Nitrous oxide emissions were determined in three campaigns in the aeration tank of a full scale conventional activated sludge wastewater treatment plant. During these experiments, the carbonaceous organic matter (BOD and COD) removal was high and rather constant (97-98% and 93-96%). The results indicate that the concentration of total nitrogen in the influent wastewater, especially NH4+, and the aeration flow rate are key controlling factor of N2O emissions from the aeration tank. Nitrification was the major source of N2O, suggested by the behavior of DO concentrations, NO3-/NH4+ ratio and pH values along the six interlinked zones of the aeration tank. Excessive air flow intensified N2O transfer from the liquor to the atmosphere by air stripping.



2019 ◽  
Vol 7 (2) ◽  
pp. 441-452 ◽  
Author(s):  
Qihui Wang ◽  
Feng Zhou ◽  
Ziyin Shang ◽  
Philippe Ciais ◽  
Wilfried Winiwarter ◽  
...  

Abstract Croplands are the single largest anthropogenic source of nitrous oxide (N2O) globally, yet their estimates remain difficult to verify when using Tier 1 and 3 methods of the Intergovernmental Panel on Climate Change (IPCC). Here, we re-evaluate global cropland-N2O emissions in 1961–2014, using N-rate-dependent emission factors (EFs) upscaled from 1206 field observations in 180 global distributed sites and high-resolution N inputs disaggregated from sub-national surveys covering 15593 administrative units. Our results confirm IPCC Tier 1 default EFs for upland crops in 1990–2014, but give a ∼15% lower EF in 1961–1989 and a ∼67% larger EF for paddy rice over the full period. Associated emissions (0.82 ± 0.34 Tg N yr–1) are probably one-quarter lower than IPCC Tier 1 global inventories but close to Tier 3 estimates. The use of survey-based gridded N-input data contributes 58% of this emission reduction, the rest being explained by the use of observation-based non-linear EFs. We conclude that upscaling N2O emissions from site-level observations to global croplands provides a new benchmark for constraining IPCC Tier 1 and 3 methods. The detailed spatial distribution of emission data is expected to inform advancement towards more realistic and effective mitigation pathways.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Khadim Dawar ◽  
Shah Fahad ◽  
M. M. R. Jahangir ◽  
Iqbal Munir ◽  
Syed Sartaj Alam ◽  
...  

AbstractIn this study, we explored the role of biochar (BC) and/or urease inhibitor (UI) in mitigating ammonia (NH3) and nitrous oxide (N2O) discharge from urea fertilized wheat cultivated fields in Pakistan (34.01°N, 71.71°E). The experiment included five treatments [control, urea (150 kg N ha−1), BC (10 Mg ha−1), urea + BC and urea + BC + UI (1 L ton−1)], which were all repeated four times and were carried out in a randomized complete block design. Urea supplementation along with BC and BC + UI reduced soil NH3 emissions by 27% and 69%, respectively, compared to sole urea application. Nitrous oxide emissions from urea fertilized plots were also reduced by 24% and 53% applying BC and BC + UI, respectively, compared to urea alone. Application of BC with urea improved the grain yield, shoot biomass, and total N uptake of wheat by 13%, 24%, and 12%, respectively, compared to urea alone. Moreover, UI further promoted biomass and grain yield, and N assimilation in wheat by 38%, 22% and 27%, respectively, over sole urea application. In conclusion, application of BC and/or UI can mitigate NH3 and N2O emissions from urea fertilized soil, improve N use efficiency (NUE) and overall crop productivity.



2021 ◽  
Vol 13 (9) ◽  
pp. 4928
Author(s):  
Alicia Vanessa Jeffary ◽  
Osumanu Haruna Ahmed ◽  
Roland Kueh Jui Heng ◽  
Liza Nuriati Lim Kim Choo ◽  
Latifah Omar ◽  
...  

Farming systems on peat soils are novel, considering the complexities of these organic soil. Since peat soils effectively capture greenhouse gases in their natural state, cultivating peat soils with annual or perennial crops such as pineapples necessitates the monitoring of nitrous oxide (N2O) emissions, especially from cultivated peat lands, due to a lack of data on N2O emissions. An on-farm experiment was carried out to determine the movement of N2O in pineapple production on peat soil. Additionally, the experiment was carried out to determine if the peat soil temperature and the N2O emissions were related. The chamber method was used to capture the N2O fluxes daily (for dry and wet seasons) after which gas chromatography was used to determine N2O followed by expressing the emission of this gas in t ha−1 yr−1. The movement of N2O horizontally (832 t N2O ha−1 yr−1) during the dry period was higher than in the wet period (599 t N2O ha−1 yr−1) because of C and N substrate in the peat soil, in addition to the fertilizer used in fertilizing the pineapple plants. The vertical movement of N2O (44 t N2O ha−1 yr−1) was higher in the dry season relative to N2O emission (38 t N2O ha−1 yr−1) during the wet season because of nitrification and denitrification of N fertilizer. The peat soil temperature did not affect the direction (horizontal and vertical) of the N2O emission, suggesting that these factors are not related. Therefore, it can be concluded that N2O movement in peat soils under pineapple cultivation on peat lands occurs horizontally and vertically, regardless of season, and there is a need to ensure minimum tilling of the cultivated peat soils to prevent them from being an N2O source instead of an N2O sink.



Sign in / Sign up

Export Citation Format

Share Document