scholarly journals Sensor bias impact on efficient aeration control during diurnal load variations

Author(s):  
Oscar Samuelsson ◽  
Gustaf Olsson ◽  
Erik Lindblom ◽  
Anders Björk ◽  
Bengt Carlsson

Abstract This study highlights the need to increase our understanding of the interplay between sensor drift and the performance of the automatic control system. The impact from biased sensors on the automatic control systems is rarely considered when different control strategies are assessed in water resource recovery facilities. Still, the harsh measurement environment with negative effects on sensor data quality is widely acknowledged. Simulations were used to show how sensor bias in an ammonium cascade feedback controller impacts aeration energy efficiency and total nitrogen removal in an activated sludge process. Response surface methodology was used to reduce the required number of simulations, and to consider the combined effect of two simultaneously biased sensors. The effects from flow variations, and negatively biased ammonium (−1 mg/L) and suspended solids sensors (−500 mg/L) reduced the nitrification aeration energy efficiency by between 7 and 25%. Less impact was seen on total nitrogen removal. There were no added non-linear effects from the two simultaneously biased sensors, apart from an interaction between a biased ammonium sensor and dissolved oxygen sensor located in the last aerated zone. Negative effects from sensor bias can partly be limited if the expected bias direction is considered when the controller setpoint-limits are defined.

2021 ◽  
Author(s):  
Sadaf mehrabi ◽  
Dwight Houweling ◽  
Martha Dagnew

Abstract High energy costs, organic carbon availability, and space limitation are some of the barriers faced by wastewater treatment processes. This research investigates the impact of membrane aeration mode, scouring intensity, and loading rate in a single-stage total nitrogen removal process in a membrane aerated biofilm reactor (MABR). Under ammonia loading of 2.7 g N/m2.d, continuous process aeration led to 1.7 g NH4-N/m2.d and 0.8 g TN/m2.d removal, respectively. Conversely, intermittent (5/12 min on/off) aeration resulted in 35% less ammonia removal but 34% higher total nitrogen (TN) removal. The MABR under ammonia load of 1.6 g N/m2.d showed an enhanced effluent quality with an average of 2.5 mg/L effluent ammonia concentration. This finding highlights the nitrification potential of a flow-through MABR as a standalone treatment step without any downstream process. Also, slough-off, a common issue in the biofilm process and was hypothesized to reduce the removal efficiency, showed increased ammonia removal rates by 20%. The microbial analysis indicated the dominant AOB and NOB species as Nitrosomonas spp. and Nitrospira spp, respectively. Moreover, the relative abundance of denitrifying bacteria (40.5%) were found twice in intermittently-aerated MABR compared to the continuously-aerated one (20.5%). However, NOB and denitrifying bacteria relative abundances were comparable where continuous air was supplied.


RSC Advances ◽  
2015 ◽  
Vol 5 (73) ◽  
pp. 59326-59334 ◽  
Author(s):  
A. Chen ◽  
Y. Chen ◽  
C. Ding ◽  
H. Liang ◽  
B. Yang

The presence of 2 and 5 mg L−1of tetracycline decreased total nitrogen removal. Tetracycline induced EPS release and decreased its protective role on cells. Denitrifiers instead of nitrifiers were negatively affected by tetracycline.


2010 ◽  
Vol 61 (9) ◽  
pp. 2259-2266 ◽  
Author(s):  
Styliani Kantartzi ◽  
Paraschos Melidis ◽  
Alexander Aivasidis

In the present study, a laboratory scale system, consisting of a primary settling tank, a continuous stirred tank reactor and a clarifier were constructed and operated, using wastewater from the municipal wastewater treatment plant in Xanthi, Greece. The system operated under intermittent aeration in aerobic/anoxic conditions and feeding of the wastewater once in every cycle. The unit was inoculated with sludge, which originated from the recirculation stream of the local wastewater treatment plant. The wastewater was processed with hydraulic retention time (HRT) of 12 h, in which various experimental states were studied regarding the combination of aerobic and anoxic intervals. The wastewater was fed in limited time once in every cycle of aerobic/anoxic conditions at the beginning of the anoxic period. The two states that exhibited highest performance in nitrification and total nitrogen removal were, then, repeated with HRT of 10 h. The results show that, regarding the nitrification stage and the organic load removal, the intermittent system achieved optimum efficiency, with an overall removal of biological oxygen demand (BOD5) and ammonium nitrogen in the range of 93–96% and 91–95% respectively. As far as the total nitrogen removal is concerned, and if the stage of the denitrification is taken into account, the performance of the intermittent system surpassed other methods, as it is shown by the total Kjeldahl nitrogen (TKN) removal efficiency of 85–87%. These operating conditions suppressed the growth of filamentous organisms, a fact reflected at the SVI values, which were lower than 150 ml/g.


2007 ◽  
Vol 55 (8-9) ◽  
pp. 59-65 ◽  
Author(s):  
A. Onnis-Hayden ◽  
P.B. Pedros ◽  
J. Reade

An experimental study investigating the nitrogen removal efficiency from the recycle stream generated in the dewatering facility of the anaerobically digested sludge at the Deer Island wastewater treatment plant (WWTP) in Boston was conducted using a single submerged attached growth bioreactor (SAGB), designed for simultaneous nitrification and denitrification. The applied nitrogen loading to the reactor ranged from 0.7 to 2.27 kg-N/m3·d, and the corresponding total nitrogen (TN) removal rate ranged from 0.38 to 1.8 kg-N/m3·d. The observed nitrification rates varied from 0.42 kg-N/m3·d to 1.45 kg-N/m3·d with an ammonia load of 0.5 kg-N/m3·d and 1.8 kg-N/m3·d, respectively. An average nitrification efficiency of 91% was achieved throughout the experiment. Denitrification efficiency varied from 55%, obtained without any addition of carbon source, to 95% when methanol was added in order to obtain a methanol/nitrate ratio of about 3 kg methanol/kg NO3−-N.


2021 ◽  
Vol 401 ◽  
pp. 123232
Author(s):  
Changhui Zhou ◽  
Jing Bai ◽  
Yan Zhang ◽  
Jinhua Li ◽  
Zhijing Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document