scholarly journals Dietary Protein Modulates Circadian Changes in Core Body Temperature and Metabolic Rate in Rats

2008 ◽  
Vol 58 (1) ◽  
pp. 75-81 ◽  
Author(s):  
Ippei Yamaoka ◽  
Mitsuo Nakayama ◽  
Takanori Miki ◽  
Toshifumi Yokoyama ◽  
Yoshiki Takeuchi
2015 ◽  
Vol 16 ◽  
pp. S186-S187 ◽  
Author(s):  
I. Park ◽  
M. Kayaba ◽  
K. Iwayama ◽  
H. Ogata ◽  
Y. Sengoku ◽  
...  

2010 ◽  
Vol 299 (6) ◽  
pp. R1478-R1488 ◽  
Author(s):  
Marshall Hampton ◽  
Bethany T. Nelson ◽  
Matthew T. Andrews

Small hibernating mammals show regular oscillations in their heart rate and body temperature throughout the winter. Long periods of torpor are abruptly interrupted by arousals with heart rates that rapidly increase from 5 beats/min to over 400 beats/min and body temperatures that increase by ∼30°C only to drop back into the hypothermic torpid state within hours. Surgically implanted transmitters were used to obtain high-resolution electrocardiogram and body temperature data from hibernating thirteen-lined ground squirrels ( Spermophilus tridecemlineatus ). These data were used to construct a model of the circulatory system to gain greater understanding of these rapid and extreme changes in physiology. Our model provides estimates of metabolic rates during the torpor-arousal cycles in different model compartments that would be difficult to measure directly. In the compartment that models the more metabolically active tissues and organs (heart, brain, liver, and brown adipose tissue) the peak metabolic rate occurs at a core body temperature of 19°C approximately midway through an arousal. The peak metabolic rate of the active tissues is nine times the normothermic rate after the arousal is complete. For the overall metabolic rate in all tissues, the peak-to-resting ratio is five. This value is high for a rodent, which provides evidence for the hypothesis that the arousal from torpor is limited by the capabilities of the cardiovascular system.


1988 ◽  
Vol 66 (12) ◽  
pp. 2782-2790 ◽  
Author(s):  
R. W. Davis ◽  
T. M. Williams ◽  
J. A. Thomas ◽  
R. A. Kastelein ◽  
L. H. Cornell

The purpose of this study was to develop a method to clean and rehabilitate sea otters (Enhydra lutris) that might become contaminated during an oil spill and to determine which physiological and behavioral factors were important in restoring the insulation provided by the fur. Tests were conducted on 12 sea otters captured in Alaska and brought to the Sea World Research Institute in San Diego. Measurements of average metabolic rate, core body temperature, behavior, and squalene (the major lipid of sebum) concentration on the fur were made under three conditions: (i) before oiling (base line), (ii) 1–3 days after 20% of the body surface area was covered with fresh crude oil, and (iii) after cleaning. Under base-line conditions in water at 13 °C, average metabolic rate was 8.0 W/kg, core body temperature was 38.9 °C, and whole body thermal conductance was 10.7 W/(m2∙ °C). Otters spent 35% of their time grooming, 45% resting, 10% swimming, and 10% feeding. The squalene concentration on the fur averaged 3.7 mg/g fur. Oiling increased thermal conductance 1.8 times. To compensate for the loss of insulation and maintain a normal core body temperature (39 °C), the otters increased average metabolic rate (1.9 times) through voluntary activity and shivering; the time spent grooming and swimming increased 1.7 times. Using Dawn detergent, we were able to clean the oiled fur during 40 min of washing and rinsing. Grooming activity by the otters was essential for restoring the water-repellent quality of the fur. Core body temperature, average metabolic rate, and thermal conductance returned to base-line levels 3–6 days after cleaning. Squalene was removed by cleaning and did not return to normal levels in the oiled area after 7 days. Veterinary care was important to keep the otters healthy. At least 1–2 weeks should be allowed for otters to restore the insulation of their fur and for recovery from the stress of oiling and cleaning.


2016 ◽  
Vol 139 (3) ◽  
Author(s):  
Robins T. Kalathil ◽  
Gavin A. D'Souza ◽  
Amit Bhattacharya ◽  
Rupak K. Banerjee

Heat stress experienced by firefighters is a common consequence of extreme firefighting activity. In order to avoid the adverse health conditions due to uncompensable heat stress, the prediction and monitoring of the thermal response of firefighters is critical. Tissue properties, among other parameters, are known to vary between individuals and influence the prediction of thermal response. Further, measurement of tissue properties of each firefighter is not practical. Therefore, in this study, we developed a whole body computational model to evaluate the effect of variability (uncertainty) in tissue parameters on the thermal response of a firefighter during firefighting. Modifications were made to an existing human whole body computational model, developed in our lab, for conducting transient thermal analysis for a firefighting scenario. In conjunction with nominal (baseline) tissue parameters obtained from literature, and physiologic conditions from a firefighting drill, the Pennes' bioheat and energy balance equations were solved to obtain the core body temperature of a firefighter. Subsequently, the uncertainty in core body temperature due to variability in the tissue parameters (input parameters), metabolic rate, specific heat, density, and thermal conductivity was computed using the sensitivity coefficient method. On comparing the individual effect of tissue parameters on the uncertainty in core body temperature, the metabolic rate had the highest contribution (within ±0.20 °C) followed by specific heat (within ±0.10 °C), density (within ±0.07 °C), and finally thermal conductivity (within ±0.01 °C). A maximum overall uncertainty of ±0.23 °C in the core body temperature was observed due to the combined uncertainty in the tissue parameters. Thus, the model results can be used to effectively predict a realistic range of thermal response of the firefighters during firefighting or similar activities.


2012 ◽  
Vol 30 (6) ◽  
pp. 539-544 ◽  
Author(s):  
Thomas I. Nathaniel ◽  
Effiong Otukonyong ◽  
Ahmed Abdellatif ◽  
Julius O. Soyinka

2012 ◽  
Vol 26 (2) ◽  
Author(s):  
Joanna Pawlak ◽  
Paweł Zalewski ◽  
Jacek J. Klawe ◽  
Monika Zawadka ◽  
Anna Bitner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document