scholarly journals Water Use in Enhanced Geothermal Systems (EGS): Geology of U.S. Stimulation Projects, Water Costs, and Alternative Water Source Policies

2014 ◽  
Author(s):  
C. B. Harto ◽  
J. N. Schroeder ◽  
R. M. Horner ◽  
T. L. Patton ◽  
L. A. Durham ◽  
...  
EDIS ◽  
2021 ◽  
Vol 2021 (2) ◽  
pp. 8
Author(s):  
Leticia Braune ◽  
Gulcan Onel ◽  
Tatiana Borisova ◽  
Pilar Useche

Fresh water is becoming increasing scarce as the world population grows rapidly. Reclaimed water from alternative sources can be used to help offset the demand for fresh surface water and groundwater in agriculture. To ensure that pathogenic or trace chemical constituents in reclaimed water do not pose a threat to human health and the environment, state and federal governments impose regulations governing reclaimed water use. This fact sheet documents the rules and regulations governing the use of reclaimed water from alternative water sources in Florida agriculture. Target audiences include growers exploring alternative water use for agriculture, non-core professionals, core professionals, and the public.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2791
Author(s):  
Pengyan Su ◽  
Mingjun Zhang ◽  
Deye Qu ◽  
Jiaxin Wang ◽  
Yu Zhang ◽  
...  

As a species for ecological restoration in northern China, Tamarix ramosissima plays an important role in river protection, flood control, regional climate regulation, and landscape construction with vegetation. Two sampling sites were selected in the hillside and floodplain habitats along the Lanzhou City, and the xylems of T. ramosissima and potential water sources were collected, respectively. The Bayesian mixture model (MixSIAR) and soil water excess (SW-excess) were applied to analyze the relationship on different water pools and the utilization ratios of T. ramosissima to potential water sources in two habitats. The results showed that the slope and intercept of local meteoric water line (LMWL) in two habitats were smaller compared with the global meteoric water line (GMWL), which indicated the existence of drier climate and strong evaporation in the study area, especially in the hillside habitat. Except for the three months in hillside, the SW-excess of T. ramosissima were negative, which indicated that xylems of T. ramosissima are more depleted in δ2H than the soil water line. In growing seasons, the main water source in hillside habitat was deep soil water (80~150 cm) and the utilization ratio was 63 ± 17% for T. ramosissima, while the main water source in floodplain habitat was shallow soil water (0~30 cm), with a utilization ratio of 42.6 ± 19.2%, and the water sources were different in diverse months. T. ramosissima has a certain adaptation mechanism and water-use strategies in two habitats, and also an altered water uptake pattern in acquiring the more stable water. This study will provide a theoretical basis for plant water management in ecological environment protection in the Loess Plateau.


2021 ◽  
Vol 13 (2) ◽  
pp. 807
Author(s):  
Wanrui Zhu ◽  
Wenhua Li ◽  
Peili Shi ◽  
Jiansheng Cao ◽  
Ning Zong ◽  
...  

Understanding how soil water source is used spatiotemporally by tree species and if native species can successfully coexist with introduced species is crucial for selecting species for afforestation. In the rocky mountainous areas of the Taihang Mountains, alien Robinia pseudoacacia L. has been widely afforested into the native shrublands dominated by Ziziphus jujuba Mill var. spinosa and Vitex negundo L. var. heterophylla to improve forest coverage and soil nutrients. However, little is known about the water relation among species, especially seasonal water use sources in different microsites. We selected the soil and plant xylem samples of two opposite microtopographic sites (ridge and valley) monthly in the growth season to analyze isotope composition. The proportions of water sources were quantified by the MixSIAR model and compared pairwise between species, microsites and seasons. We found that deep subsoil water at a depth of 40–50 cm contributed up to 50% of the total water uptake for R. pseudoacacia and Z. jujuba in the growing season, indicating that they stably used deeper soil water and had intense water competition. However, V. negundo had a more flexible water use strategy, which derived more than 50% of the total water uptake from the soil layer of 0–10 cm in the rainy season, but majorly captured soil water at a depth of 30–50 cm in the dry season. Therefore, high niche overlaps were shown in V. negundo with the other two species in the dry season, but niche segregation was seen in the rainy season. The microtopographic sites did not shift the seasonal dynamic of the water source use patterns of the three studied species, but the water use niche overlap was higher in the valley than in the ridge. Taken together, the introduced species R. pseudoacacia intensified water competition with the native semi-arbor species Z. jujuba, but it could commonly coexist with the native shrub species V. negundo. Therefore, our study on seasonal water use sources in different microsites provides insight into species interaction and site selection for R. pseudoacacia afforestation in the native shrub community in rocky mountainous areas. It is better to plant R. pseudoacacia in the shrubland in the valley so as to avoid intense water competition and control soil erosion.


Geothermics ◽  
2015 ◽  
Vol 58 ◽  
pp. 22-31 ◽  
Author(s):  
Hongbo Shao ◽  
Senthil Kabilan ◽  
Sean Stephens ◽  
Niraj Suresh ◽  
Anthon N. Beck ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document