scholarly journals The long-term acceleration of waste glass corrosion: A preliminary review

1995 ◽  
Author(s):  
A.L. Kielpinski
1993 ◽  
Vol 333 ◽  
Author(s):  
W.L. Ebert ◽  
J.J. Mazer

ABSTRACTA literature survey has been performed to assess the effects of the temperature, glass surface area/leachate volume ratio, leachant composition, leachant flow rate, and glass composition (actual radioactive vs. simulated glass) used in laboratory tests on the measured glass reaction rate. The effects of these parameters must be accounted for in mechanistic models used to project glass durability over long times. Test parameters can also be used to highlight particular processes in laboratory tests. Waste glass corrosion results as water diffusion, ion exchange, and hydrolysis reactions occur simultaneously to devitrify the glass and release soluble glass components into solution. The rates of these processes are interrelated by the effects of the solution chemistry and glass alteration phases on each process, and the dominant (fastest) process may change as the reaction progresses. Transport of components from the release sites into solution may also affect the observed corrosion rate. The reaction temperature will affect the rate of each process, while other parameters will affect the solution chemistry and the particular processes that are observed during the test. The early stages of corrosion will be observed under test conditions which maintain dilute leachates and the later stages will be observed under conditions that generate more concentrated leachate solutions. Typically, water diffusion and ion exchange reactions dominate the observed glass corrosion in dilute solutions, while hydrolysis reactions are dominant in more concentrated solutions. Which process controls the long-term glass corrosion is not fully understood, and the long-term corrosion rate may be either transport- or reaction-limited.


2000 ◽  
Vol 663 ◽  
Author(s):  
M.I. Ojovan ◽  
N.V. Ojovan ◽  
I.V. Startceva ◽  
G.N. Chuikova ◽  
A.S. Barinov

ABSTRACTA model developed for description of waste glass corrosion has been applied to assess the radionuclide release from real radioactive (intermediate level) vitrified material over extended storage periods. Field data generated during the long-term testing of the prototype waste glass packages were mathematically processed and the derived parameters used in model calculations. Regardless of the corrosive saturated conditions of the wet near-surface repository, the fairly high safety of trench disposal has been demonstrated for borosilicate glass containing real NPP- operational waste.


1982 ◽  
Vol 15 ◽  
Author(s):  
Richard M. Wallace ◽  
George G. Wicks

Studies of the leachability of waste glass have been in progress at Savannah River Laboratory (SRL) for several years. The principal objective of these studies has been to predict the long-term behavior of Savannah River Plant waste glass when stored in a repository. Such predictions can be made from the results of short-term tests only if the mechanisms of waste glass corrosion are understood. Determining the mechanisms of corrosion and developing a predictive model have therefore been a major thrust of our work.


1996 ◽  
Vol 465 ◽  
Author(s):  
L. Nuñez ◽  
W. L. Ebert ◽  
S. F. Wolf ◽  
J. K. Bates

ABSTRACTWe are characterizing the corrosion behavior of the radioactive glass that was made with sludge from Tank 51 at the Defense Waste Processing Facility (DWPF) and a nonradioactive glass having the same composition, except for the absence of radionuclides. Static dissolution tests are being conducted in a tuff groundwater solution at glass surface area/solution volume ratios (S/V) of 2000 and 20,000 m−1. These tests are being conducted to assess the relationship between the behavior of this glass in a 7-day Product Consistency Test and in long-term tests, to assess the effects of radionuclides on the glass corrosion behavior, and to measure the disposition of radionuclides that are released as the radioactive glass corrodes. The radioactive glass reacts slower than the nonradioactive glass through the longest test durations completed to date, which are 140 days for tests at 2000 m−1 and about 400 days for tests at 20,000 m−1. This is probably because radiolysis results in lower solution pH values being maintained in tests with the radioactive glass. Rate-affecting alteration phases that had formed within one year in tests with other glasses having compositions similar to the Tank 51 glass have not yet formed in tests with either glass.


1986 ◽  
Vol 84 ◽  
Author(s):  
Ned E. Bibler ◽  
Carol M. Jantzen

AbstractIn the geologic disposal of nuclear waste glass, the glass will eventually interact with groundwater in the repository system. Interactions can also occur between the glass and other waste package materials that are present. These include the steel canister that holds the glass, the metal overpack over the canister, backfill materials that may be used, and the repository host rock. This review paper systematizes the additional interactions that materials in the waste package will impose on the borosilicate glass waste form-groundwater interactions. The repository geologies reviewed are tuff, salt, basalt, and granite. The interactions emphasized are those appropriate to conditions expected after repository closure, e.g. oxic vs. anoxic conditions. Whenever possible, the effect of radiation from the waste form on the interactions is examined. The interactions are evaluated based on their effect on the release and speciation of various elements including radionuclides from the glass. It is noted when further tests of repository interactions are needed before long-term predictions can be made.


Author(s):  
Michael I. Ojovan ◽  
Natalia V. Ojóvan ◽  
Irene V. Startceva ◽  
Zoja I. Golubeva ◽  
Alexander S. Barinov

Abstract A mathematical model was used to predict radionuclide release from bitumen and glass waste forms over extended time periods. To calculate some model parameters, we used experimental data derived from 12yr field tests with six borosilicate waste glass blocks (each ∼30 kg in weight) and a bitumen block (310 kg), containing real intermediate-level NPP operational waste (NaNO3, 86 wt.% of a dry salt content; 137Cs, 82% of the radioactive inventory). Specific radioactivities of the glass material containing 35 wt.% waste oxides were βtot(90Sr+90Y), 3.74×106 Bq/kg, and αtot(239Pu), 1.3×104Bq/kg. The bitumen block with ∼31 wt.% salt content and βtot(90Sr+90Y), 4.0·106 Bq/kg, and αtot(239Pu), 3.0×103 Bq/kg was manufactured on base of a hard bitumen BN-IV. Tests with the waste forms were performed under saturated conditions of an experimental near-surface repository with a free access of groundwater to the waste blocks through a covering of host loamy soil and backfill of coarse sand. The way used to quantify the amount of leached radioactivity was to measure the volume and radioactivity concentrations of contacting groundwater. In the model, radionuclide release from the waste glass is assumed to be controlled by the processes of diffusion limited ion exchange and glass network dissolution. The mechanism of radionuclide release from the bitumen matrix is believed to remain the same throughout the long-term storage period, except for the initial stage when an enhanced leaching from the surface layer occurs. This long-term release is assumed to be controlled by diffusion of radionuclides through the bitumen matrix. So, identical formulae were applied to calculate the values of leached radioactivity fractions for two waste forms. Radioactivity release curves were plotted for field data and calculation results. For both waste forms, there was good agreement between the modelled and available experimental data. According to the modelling results, fmax = 2.3×10−3% of the initial radioactivity will release from the waste glass into the environment within a proposed institutional control period of 300 years under conditions of the near-surface repository and in the absence of additional engineered barriers. For the bitumen block and the same 300-yr period, the total (maximum) leached radioactivity fraction will be fmax = 4.2×10−3%. The main result of the modelling and experimental studies concerning the leaching behaviour of the bituminised and vitrified waste materials is that the fractional radioactivity release for two waste forms is on the same order of magnitude. Numerical release values per a unit of a surface area to volume ratio are also rather close for two waste forms (exposed surface area to volume ratio for the bitumen block is 2 to 4 times greater then for the glass).


Sign in / Sign up

Export Citation Format

Share Document