scholarly journals THE EFFECT OF OXIDATION, THERMAL CYCLING, AND IRRADIATION ON SILICON CARBIDE (SiC) COATED GRAPHITE

1966 ◽  
Author(s):  
J.L. Jackson
Author(s):  
David Curran ◽  
Fletcher Miller ◽  
Russell Carrington ◽  
Arlon Hunt

Concentrated solar power (CSP) must decrease its levelized cost of electricity (LCOE) below the DOE SunShot program targets of 6 ¢/kWhe and improve its reliability to enable widespread adoption. Two features of CSP that will decrease LCOE and improve reliability are higher operating temperatures for the power cycle and thermal energy storage (TES). Thermaphase Energy and San Diego State University are developing the Liquid Metal Thermal Energy Storage System (LiMTESS), an innovative TES system based on phase change in Al-Si and Mg-Si alloys that stores thermal energy produced by gas-cooled solar receivers at temperatures above 800 C. Proper containment for Al-Si and Mg-Si alloys is critical for LiMTESS commercialization. Any containment vessel must be simultaneously compatible with the molten alloys and high-temperature oxidizing gases (e.g., air), facilitate heat transfer between the alloys and high-temperature oxidizing gases, and accommodate internal stresses associated with TES operation. A ceramic-metallic composite material (TCON) and select ceramics such as siliconized silicon carbide (SiSiC) and alumina initially showed promise in meeting these requirements. A series of thermal cycling tests were performed to check the integrity of the containment vessels. TCON produced macroscopic nodules during the thermal cycling that eliminated it from further consideration. On the other hand, SiSiC performed well when exposed to high-temperature, AlSi36, MgSi56, and air. To further evaluate SiSiC as a containment material, the research team conducted multiple thermal cycles with variable temperature profiles, duration of test, and gas environments. Before and after each thermal cycle, the team conducted a mass analysis and performed SEM and EDS analysis on prepared, treated samples. The results confirm SiSiC is a good candidate for a containment vessel. At this point the research team is evaluating Morcoset, a silicon carbide-based mortar, for creating an air-tight seal for SiSiC. The research team assessed the quality of the seal by using the mortar to seal MgSi56 and conducted thermal cycling tests to compare the mass loss of the system due to Mg vapor escaping the system to that of a controlled system with no alloys sealed. Results confirmed that Mg vapor did not exit the system. There is still more work to do, but preliminary results indicate the Morcoset + SiSiC system is a good containment system for AlSi36/MgSi56. In this paper the results of the long-duration thermal cycling tests as well as electron micrographs of the containment seals and phase change materials are presented.


2018 ◽  
Vol 2018 (HiTEC) ◽  
pp. 000087-000092
Author(s):  
M. Montazeri ◽  
S. Seal ◽  
A. Wallace ◽  
A. Mantooth ◽  
D. Huitink

Abstract Increasing power density in power electronics is driving a need for improved packaging methods for co-optimized high frequency performance, thermal dissipation and reliable operation, especially at high temperatures. Silicon Carbide (SiC) devices offer great opportunity as wide bandgap semiconductor devices, which maintain stability over wide temperature ranges, especially when compared to Silicon (Si) based devices. A novel flip-chip packaging technique for SiC power devices was developed at the University of Arkansas. This new package re-orients a bare die from a lateral device to a vertical device by utilizing a copper connector that routes the drain connection to the top side of the die. This study involves an investigation of achieving a co-optimized packaging configuration for thermomechanical reliability and low parasitic inductance. By orienting this SiC switch vertically, the unique 3D drain connector dramatically reduces the ringing at aggressive switching speeds used in power electronics when compared to Commercial Off The Shelf (COTS) devices. However, the design of this drain connector holds importance for high temperature operation, interconnect reliability as well as manufacturability. Effects of the packaging design, including materials, layout and solder pitch size were investigated from a thermal cycling reliability aspect. Electrical performance, such as parasitic inductances of the device, was also investigated using Finite Element Analysis (FEA) simulation. Several drain connector architectures were evaluated for their fatigue life capability of solder interconnects under thermal cycling (according to Darveaux's model) in conjunction with the parasitic inductance using FEA simulation. Based on the simulation results, an optimized architecture was selected and fabricated for prototype demonstration, and the electrical performance under double pulse test compared with state of the art devices demonstrated improvement in switching performance by reducing overshoot of voltage across the grain-source by 36% and 77% reduction of the drain current ringing during the turn-off event while eliminating voltage overshoot during turn-on event for the testing conditions.


Author(s):  
S. D. Sonderskov ◽  
A. B. Jorgensen ◽  
A. E. Maarbjerg ◽  
K. L. Frederiksen ◽  
S. Munk-NieW ◽  
...  

2019 ◽  
Vol 141 (4) ◽  
Author(s):  
Darshan G. Pahinkar ◽  
Lauren Boteler ◽  
Dimeji Ibitayo ◽  
Sreekant Narumanchi ◽  
Paul Paret ◽  
...  

With recent advances in the state-of-the-art of power electronic devices, packaging has become one of the critical factors limiting the performance and durability of power electronics. To this end, this study investigates the feasibility of a novel integrated package assembly, which consists of copper circuit layer on an aluminum nitride (AlN) dielectric layer that is bonded to an aluminum silicon carbide (AlSiC) substrate. The entire assembly possesses a low coefficient of thermal expansion (CTE) mismatch which aids in the thermal cycling reliability of the structure. The new assembly can serve as a replacement for the conventionally used direct bonded copper (DBC)—Cu base plate—Al heat sink assembly. While improvements in thermal cycling stability of more than a factor of 18 has been demonstrated, the use of AlSiC can result in increased thermal resistance when compared to thick copper heat spreaders. To address this issue, we demonstrate that the integration of single-phase liquid cooling in the AlSiC layer can result in improved thermal performance, matching that of copper heat spreading layers. This is aided by the use of heat transfer enhancement features built into the AlSiC layer. It is found that, for a given pumping power and through analytical optimization of geometries, microchannels, pin fins, and jets can be designed to yield a heat transfer coefficients (HTCs) of up to 65,000 W m−2 K−1, which can result in competitive device temperatures as Cu-baseplate designs, but with added reliability.


Author(s):  
R. J. Lauf

Fuel particles for the High-Temperature Gas-Cooled Reactor (HTGR) contain a layer of pyrolytic silicon carbide to act as a miniature pressure vessel and primary fission product barrier. Optimization of the SiC with respect to fuel performance involves four areas of study: (a) characterization of as-deposited SiC coatings; (b) thermodynamics and kinetics of chemical reactions between SiC and fission products; (c) irradiation behavior of SiC in the absence of fission products; and (d) combined effects of irradiation and fission products. This paper reports the behavior of SiC deposited on inert microspheres and irradiated to fast neutron fluences typical of HTGR fuel at end-of-life.


Author(s):  
K. B. Alexander ◽  
P. F. Becher

The presence of interfacial films at the whisker-matrix interface can significantly influence the fracture toughness of ceramic composites. The film may alter the interface debonding process though changes in either the interfacial fracture energy or the residual stress at the interface. In addition, the films may affect the whisker pullout process through the frictional sliding coefficients or the extent of mechanical interlocking of the interface due to the whisker surface topography.Composites containing ACMC silicon carbide whiskers (SiCw) which had been coated with 5-10 nm of carbon and Tokai whiskers coated with 2 nm of carbon have been examined. High resolution electron microscopy (HREM) images of the interface were obtained with a JEOL 4000EX electron microscope. The whisker geometry used for HREM imaging is described in Reference 2. High spatial resolution (< 2-nm-diameter probe) parallel-collection electron energy loss spectroscopy (PEELS) measurements were obtained with a Philips EM400T/FEG microscope equipped with a Gatan Model 666 spectrometer.


Sign in / Sign up

Export Citation Format

Share Document