scholarly journals Final project report - CRADA with United Solar Technologies and Pacific Northwest Laboratory (PNL-021): Thin film materials for low-cost high performance solar concentrators

10.2172/67715 ◽  
1995 ◽  
Author(s):  
P. M. Martin ◽  
J. D. Affinito ◽  
M. E. Gross ◽  
W. D. Bennett



2018 ◽  
Vol 42 (16) ◽  
pp. 13382-13392 ◽  
Author(s):  
Ke Zheng ◽  
Shaoqi Zhou ◽  
Xuan Zhou

The incorporation of the PVB significantly improved the performance of the PVB/PVC substrates based thin-film composite forward osmosis membrane.



2020 ◽  
Vol 2 (1) ◽  
pp. 368-376 ◽  
Author(s):  
Nan Chen ◽  
Michael R. Scimeca ◽  
Shlok J. Paul ◽  
Shihab B. Hafiz ◽  
Ze Yang ◽  
...  

A high-performance n-type thermoelectric Ag2Se thin film via cation exchange using a low-cost solution processed Cu2Se template.





2016 ◽  
Vol 4 (20) ◽  
pp. 4478-4484 ◽  
Author(s):  
Ao Liu ◽  
Guoxia Liu ◽  
Huihui Zhu ◽  
Byoungchul Shin ◽  
Elvira Fortunato ◽  
...  

Eco-friendly IWO thin films are fabricated via a low-cost solution process and employed as channel layers in thin-film transistors.





2014 ◽  
Vol 136 (3) ◽  
Author(s):  
Tsung-Wei Chang ◽  
Chao-Te Liu ◽  
Wen-Hsi Lee ◽  
Yu-Jen Hsiao

In this study, commercially available white paint is used as a pigmented dielectric reflector (PDR) in the fabrication of a low-cost back electrode stack with an Al-doped ZnO (AZO) layer for thin-film silicon solar cell applications. An initial AZO film was deposited by the radio-frequency magnetron sputtering method. In order to obtain the highest transmittance and lowest resistivity of AZO film, process parameters such as sputtering power and substrate temperature were investigated. The optimal 100-nm-thick AZO film with low resistivity and high transmittance in the visible region are 6.4 × 10−3 Ω·cm and above 80%, respectively. Using glue-like white paint doped withTiO2 nanoparticles as the PDR enhances the external quantum efficiency (EQE) of a microcrystalline silicon absorptive layer owing to the doped white particles improving Fabry–Pérot interference (FPI), which raises reflectance and scattering ability. To realize the cost down requirement, decreasing the noble metal film thickness such as a 30-nm-thick silver reflector film, and a small doping particle diameter (D50 = 135 nm) and a high solid content (20%) lead to FPI improvement and a great EQE, which is attributed to improved scattering and reflectivity because of optimum diameter (Dopt) and thicker PDR film. The results indicate that white paint can be used as a reflector coating in low-cost back-electrode structures in high-performance electronics.



2022 ◽  
Vol 2152 (1) ◽  
pp. 012008
Author(s):  
Qian Chen

Abstract Metal oxide semiconductor (MOS) is essential to compose high-performance electronic devices, however, the investigation on p-type MOS is relatively rare compared with its n-type counterpart. In this work, LaGaO3 thin films with superior p-type conductivity have been prepared via a facile solution process. Moreover, we have implemented Al2O3 and SiO2 as the dielectric of the p-channel LaGaO3 thin film transistors (TFTs) annealed at different temperatures. Particularly, the LaGaO3/Al2O3 TFTs annealed at 700 °C exhibit an ultrahigh hole mobility of 12.4 cm2V-1s-1, Under the same conditions, LaGaO3/Al2O3 thin film transistor is two orders of magnitude higher than LaGaO3/SiO2 thin film transistor. The advanced p-type characteristics of the LaGaO3 thin film, along with its facile low-cost fabrication process can shed new light on future design of high-performance complementary MOS circuit with other optimized facile-integrated dielectrics.





Sign in / Sign up

Export Citation Format

Share Document