Simultaneous optimization of activity and stability of xylose reductase from D. nepalensis NCYC 3413 using statistical experimental design

2020 ◽  
Vol 27 ◽  
Author(s):  
Shwethashree Malla ◽  
Sathyanarayana N. Gummadi

Background: Physical parameters like pH and temperature play a major role in the design of an industrial enzymatic process. Enzyme stability and activity are greatly influenced by these parameters; hence optimization and control of these parameters becomes a key point in determining the economic feasibility of the process. Objective: This study was taken up with the objective to optimize physical parameters for maximum stability and activity of xylose reductase from D. nepalensis NCYC 3413 through separate and simultaneous optimization studies and comparison thereof. Method: Effects of pH and temperature on the activity and stability of xylose reductase from Debaryomyces nepalensis NCYC 3413 were investigated by enzyme assays and independent variables were optimised using surface response methodology. Enzyme activity and stability were optimised separately and concurrently to decipher the appropriate conditions. Results: Optimized conditions of pH and temperature for xylose reductase activity were determined to be 7.1 and 27 ℃ respectively, with predicted responses of specific activity (72.3 U/mg) and half-life time (566 min). The experimental values (specific activity 50.2 U/mg, half-life time 818 min) were on par with predicted values indicating the significance of the model. Conclusion: Simultaneous optimization of xylose reductase activity and stability using statistical methods is effective as compared to optimisation of the parameters separately.

1989 ◽  
Vol 56 (1) ◽  
pp. 117-127 ◽  
Author(s):  
Byeong-Seon Chang ◽  
Raymond R. Mahoney

Summaryβ-Galactosidase from an autolytic strain of Streptococcus salivarius subsp. thermophilus was purified 109-fold to near homogeneity. The yield of purified enzyme was 41% and the specific activity was 592 0-nitrophenyl β-D-galactopyranoside U/mg at 37 °C. Two isozymes were present, but only one subunit was detected, having a mol. wt of 116000. Enzyme stability was 37–83 times greater in milk than in buffer in the range 60–65 °C. At 60 °C the half-life in milk was 146 min. Denaturation in buffer was first-order, but in milk the overall reaction order with respect to enzyme concentration was ˜ 0·5. The activation energy for denaturation was 453 kJ/mol in milk and 372 kJ/mol in buffer. In milk the activation energy for lactose hydrolysis was 35·1 kJ/mol.


2021 ◽  
Vol 1 ◽  
Author(s):  
Javier Santiago-Arcos ◽  
Susana Velasco-Lozano ◽  
Eleftheria Diamanti ◽  
Aitziber L. Cortajarena ◽  
Fernando López-Gallego

Alcohol dehydrogenase from Bacillus (Geobacillus) stearothermophilus (BsADH) is a NADH-dependent enzyme catalyzing the oxidation of alcohols, however its thermal and operational stabilities are too low for its long-term use under non-physiological conditions. Enzyme immobilizations emerges as an attractive tool to enhance the stability of this enzyme. In this work, we have screened a battery of porous carriers and immobilization chemistries to enhance the robustness of a His-tagged variant of BsADH. The selected carriers recovered close to 50% of the immobilized activity and increased enzyme stability from 3 to 9 times compared to the free enzyme. We found a trade-off between the half-life time and the specific activity as a function of the relative anisotropy values of the immobilized enzymes, suggesting that both properties are oppositely related to the enzyme mobility (rotational tumbling). The most thermally stable heterogeneous biocatalysts were coupled with a NADH oxidase/catalase pair co-immobilized on porous agarose beads to perform the batch oxidation of five different 1,ω-diols with in situ recycling of NAD+. Only when His-tagged BsADH was immobilized on porous glass functionalized with Fe3+, the heterogeneous biocatalyst oxidized 1, 5-pentanediol with a conversion higher than 50% after five batch cycles. This immobilized multi-enzyme system presented promising enzymatic productivities towards the oxidation of three different diols. Hence, this strategical study accompanied by a functional and structural characterization of the resulting immobilized enzymes, allowed us selecting an optimal heterogeneous biocatalyst and their integration into a fully heterogeneous multi-enzyme system.


1983 ◽  
Vol 49 (02) ◽  
pp. 109-115 ◽  
Author(s):  
M Hoylaerts ◽  
E Holmer ◽  
M de Mol ◽  
D Collen

SummaryTwo high affinity heparin fragments (A/r 4,300 and M, 3,200) were covalently coupled to antithrombin III (J. Biol. Chem. 1982; 257: 3401-3408) with an apparent 1:1 stoichiometry and a 30-35% yield.The purified covalent complexes inhibited factor Xa with second order rate constants very similar to those obtained for antithrombin III saturated with these heparin fragments and to that obtained for the covalent complex between antithrombin III and native high affinity heparin.The disappearance rates from plasma in rabbits of both low molecular weight heparin fragments and their complexes could adequately be represented by two-compartment mammillary models. The plasma half-life (t'/j) of both low Afr-heparin fragments was approximately 2.4 hr. Covalent coupling of the fragments to antithrombin III increased this half-life about 3.5 fold (t1/2 ≃ 7.7 hr), approaching that of free antithrombin III (t1/2 ≃ 11 ± 0.4 hr) and resulting in a 30fold longer life time of factor Xa inhibitory activity in plasma as compared to that of free intact heparin (t1/2 ≃ 0.25 ± 0.04 hr).


1997 ◽  
Vol 62 (6) ◽  
pp. 855-865 ◽  
Author(s):  
Katarína Erentová ◽  
Vladimír Adamčík ◽  
Andrej Staško ◽  
Oskar Nuyken ◽  
Arming Lang ◽  
...  

The cathodically and photochemically induced decomposition of thioazo compounds XC6H4-N2-S-C6H4CH3 and their polymers with X = NO2, COOH, and SO3H were investigated. The formation of carbon-centered XC6H4. and sulfur-centered .S-C6H4Y radicals was confirmed using spin-trap technique. These reactive radicals either abstract hydrogen from CH3CN solvent molecule forming .CH2CN radical or they recombine to cage products XC6H4-S-C6H4CH3 eliminating N2. The decomposition rate of the investigated thioazo compounds is characterized by a formal half-life time of 5 to 10 s.


Blood ◽  
2001 ◽  
Vol 97 (1) ◽  
pp. 130-138 ◽  
Author(s):  
Valder R. Arruda ◽  
James N. Hagstrom ◽  
Jeffrey Deitch ◽  
Terry Heiman-Patterson ◽  
Rodney M. Camire ◽  
...  

Abstract Recent data demonstrate that the introduction into skeletal muscle of an adeno-associated viral (AAV) vector expressing blood coagulation factor IX (F.IX) can result in long-term expression of the transgene product and amelioration of the bleeding diathesis in animals with hemophilia B. These data suggest that biologically active F.IX can be synthesized in skeletal muscle. Factor IX undergoes extensive posttranslational modifications in the liver, the normal site of synthesis. In addition to affecting specific activity, these posttranslational modifications can also affect recovery, half-life in the circulation, and the immunogenicity of the protein. Before initiating a human trial of an AAV-mediated, muscle-directed approach for treating hemophilia B, a detailed biochemical analysis of F.IX synthesized in skeletal muscle was carried out. As a model system, human myotubes transduced with an AAV vector expressing F.IX was used. F.IX was purified from conditioned medium using a novel strategy designed to purify material representative of all species of rF.IX in the medium. Purified F.IX was analyzed by sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE), N-terminal sequence analysis, chemical γ-carboxyglutamyl analysis, carbohydrate analysis, assays for tyrosine sulfation, and serine phosphorylation, and for specific activity. Results show that myotube-synthesized F.IX has specific activity similar to that of liver-synthesized F.IX. Posttranslational modifications critical for specific activity, including removal of the signal sequence and propeptide, and γ-carboxylation of the N-terminal glutamic acid residues, are also similar, but carbohydrate analysis and assessment of tyrosine sulfation and serine phosphorylation disclose differences. In vivo experiments in mice showed that these differences affect recovery but not half-life of muscle-synthesized F.IX.


1983 ◽  
Vol 103 (2) ◽  
pp. 273-281 ◽  
Author(s):  
Ole Djøseland ◽  
Nicholas Bruchovsky ◽  
Paul S. Rennie ◽  
Navdeep Otal ◽  
Sian Høglo

Abstract. The 5α-reductase activity was assayed in homogenates of stroma and epithelium in the rat ventral prostate and epididymis. Samples consisting of 0.3 mg/ml tissue protein in TES buffer, pH 7.0 were incubated at 37°C for 30 min in the presence of 50 nm [1,2-3H]testosterone and a NADPH-generating system started with 5 × 10−4 m NADP. The yield of 5α-reduced metabolites, as established by using thin-layer chromatography, gave an estimate of enzyme activity. Whereas the specific activity of 5α-reductase was highest in prostatic stroma and epididymal epithelium, most of the total enzyme activity was associated with the epithelium in both the prostate and epididymis. The effect of dihydrotestosterone on specific activity of 5α-reductase was studied by administering the hormone to 7-day castrated rats. In prostate, the specific activity of both stromal and epithelium forms of the enzyme reached a maximum after 4 days of treatment. In epididymis only the epithelial form of 5α-reductase underwent a major change in specific activity, the latter peaking after 8–12 days of treatment. Furthermore, while the total activity of 5α-reductase in the prostatic tissue fractions could be induced by as much as 4-fold the normal control values, the epididymal enzyme could not be induced above the normal level either in the stroma or the epithelium. This may explain the relative resistance of epididymis to abnormal growth stimulation under the influence of hormones.


2014 ◽  
Vol 44 (4) ◽  
pp. 411-418 ◽  
Author(s):  
Renato Alves Teixeira ◽  
Tatiana Gazel Soares ◽  
Antonio Rodrigues Fernandes ◽  
Anderson Martins de Souza Braz

Studies to select one or more species of coverage plants adapted to Amazonian soil and climate conditions of the Amazon are a promising strategy for the improvement of environmental quality, establishing no-till agricultural systems, and thereby reducing the impacts of monoculture farming. The aim of this study was to assess the persistence time, half-life time, macronutrient content and accumulation, and C:N ratio of straw coverage in a Ultisol in northeastern Pará. Experimental design was randomized blocks with five treatments and five replicates. Plants were harvested after 105 days, growth and biomass production was quantified. After 84 days, soil coverage was 97, 85, 52, 50, and 15% for signalgrass (Brachiaria brizantha) (syn. Urochloa), dense crowngrass (Panicum purpurascens), jack bean (Canavalia ensiformes), pearl millet (Pennisetum americanum) and sunn hemp (Crotalaria juncea,), respectively. Signalgrass yielded the greatest dry matter production (9,696 kg ha-1). It also had high C:N ratio (38.4), long half-life (86.5 days) and a high persistence in the field. Jack bean also showed high dry matter production (8,950 kg ha-1), but it had low C:N ratio (17.4) and lower half-life time (39 days) than the grasses. These attributes indicate that signalgrass and jack bean have a high potential for use as cover plants in no-till agricultural systems in the State of Pará.


Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1844
Author(s):  
Neo Padi ◽  
Blessing Oluebube Akumadu ◽  
Olga Faerch ◽  
Chinyere Aloke ◽  
Vanessa Meyer ◽  
...  

Glutathione transferases (GSTs) are the main detoxification enzymes in schistosomes. These parasitic enzymes tend to be upregulated during drug treatment, with Schistosoma haematobium being one of the species that mainly affect humans. There is a lack of complete sequence information on the closely related bovis and haematobium 26-kDa GST isoforms in any database. Consequently, we engineered a pseudo-26-kDa S. bovis/haematobium GST (Sbh26GST) to understand structure–function relations and ligandin activity towards selected potential ligands. Sbh26GST was overexpressed in Escherichia coli as an MBP-fusion protein, purified to homogeneity and catalyzed 1-chloro-2,4-dinitrobenzene-glutathione (CDNB-GSH) conjugation activity, with a specific activity of 13 μmol/min/mg. This activity decreased by ~95% in the presence of bromosulfophthalein (BSP), which showed an IC50 of 27 µM. Additionally, enzyme kinetics revealed that BSP acts as a non-competitive inhibitor relative to GSH. Spectroscopic studies affirmed that Sbh26GST adopts the canonical GST structure, which is predominantly α-helical. Further extrinsic 8-anilino-1-naphthalenesulfonate (ANS) spectroscopy illustrated that BSP, praziquantel (PZQ), and artemisinin (ART) might preferentially bind at the dimer interface or in proximity to the hydrophobic substrate-binding site of the enzyme. The Sbh26GST-BSP interaction is both enthalpically and entropically driven, with a stoichiometry of one BSP molecule per Sbh26GST dimer. Enzyme stability appeared enhanced in the presence of BSP and GSH. Induced fit ligand docking affirmed the spectroscopic, thermodynamic, and molecular modelling results. In conclusion, BSP is a potent inhibitor of Sbh26GST and could potentially be rationalized as a treatment for schistosomiasis.


Sign in / Sign up

Export Citation Format

Share Document