Multifunctional RNase MCPIP1 and its Role in Cardiovascular Diseases

2020 ◽  
Vol 27 ◽  
Author(s):  
Binjie Yan ◽  
Yanan Guo ◽  
Yu Gui ◽  
Zhi-sheng Jian ◽  
Xi-Long Zheng

: Monocyte chemoattractant protein-1 induced protein 1 (MCPIP1), one of the MCPIP family members, is characterized by the presence of both C-x8-C-x5-C-x3-H (CCCH)-type zinc finger and PilT-N-terminal domains. As a potent regulator of innate immunity, MCPIP1 exerts anti-inflammatory effects through its ribonuclease (RNase) and deubiquitinating enzyme activities to degrade cytokine mRNAs and inhibit nuclear factor-kappa B (NF-κB), respectively. MCPIP1 is expressed not only in immune cells but also in many other cell types, including cardiomyocytes, vascular endothelial cells (ECs) and smooth muscle cells (SMCs). Increasing evidence indicates that MCPIP1 plays a role in the regulation of cardiac functions and is involved in the processes of vascular diseases, such as ischemia-reperfusion (I/R) and atherosclerosis. To better understand the emerging roles of MCPIP1 in the cardiovascular system, we reviewed the current literature with respect to MCPIP1 functions and discussed its association with the pathogenesis of cardiovascular diseases and the implication as a therapeutic target.

Pteridines ◽  
2006 ◽  
Vol 17 (1) ◽  
pp. 5-10
Author(s):  
Shunichi Shimizu ◽  
Masakazu Ishii ◽  
Teruaki Wajima ◽  
Tamio Hagiwara ◽  
Takaharu Negoro

Abstract 5,6,7,8-Tetrahydrobiopterin (BH4) is an csscntial cofactor for production of nitric oxide (NO) by N O synthase (NOS). Nitric oxide (NO) is an important signaling mo!ecu!e for the regulation o f vita! functions such as vascular tone, neurotransmission and immune surveiüance. Accumu!ated evidences show that although NOS mainly re!eases N O under nonnal conditions, NOS also produces Superoxide anion and hydrogen peroxide when BH4 is decreased, suggesting the possibility that NOS is a source of reactive oxygen species (ROS) under pathological conditions. In fact, supplementation of BH4 restores N O production and availability in various diseases including hyperlipidemia, diabetes, hypertension and ischemia-reperfusion. Moreover, recent studies show that administration o f BH4 protects tissues against ischemia-reperfusion injuiy in heart, stomach and liver. Oxidative stress is a common mechanism underlying the development of vascular diseases and reperfusion injury. Regulation of BH4 levels under oxidative stress is important to understand the role of BH4 on the development of vascular diseases and reperfusion injury. We recently described that oxidative stress transiently decreased BH4 levels, and then markedly increased its levels in vascular endothelial cells. Supplementation of BH4 appears to be important therapeutic strategies in vascular diseases and reperfusion injury, and induction of BH4 synthesis may endogenous defense system against oxidative stress-mediated cardiovascular diseases.


2021 ◽  
Vol 59 (1) ◽  
pp. 27-38 ◽  
Author(s):  
Chang-Meng Wu ◽  
Lei Zheng ◽  
Qian Wang ◽  
Yan-Wei Hu

AbstractCell senescence is a fundamental mechanism of aging and appears to play vital roles in the onset and prognosis of cardiovascular disease, fibrotic pulmonary disease, liver disease and tumor. Moreover, an increasing body of evidence shows that cell senescence plays an indispensable role in the formation and development of atherosclerosis. Multiple senescent cell types are associated with atherosclerosis, senescent human vascular endothelial cells participated in atherosclerosis via regulating the level of endothelin-1 (ET-1), nitric oxide (NO), angiotensin II and monocyte chemoattractant protein-1 (MCP-1), senescent human vascular smooth muscle cells-mediated plaque instability and vascular calcification via regulating the expression level of BMP-2, OPN, Runx-2 and inflammatory molecules, and senescent macrophages impaired cholesterol efflux and promoted the development of senescent-related cardiovascular diseases. This review summarizes the characteristics of cell senescence and updates the molecular mechanisms underlying cell senescence. Moreover, we also discuss the recent advances on the molecular mechanisms that can potentially regulate the development and progression of atherosclerosis.


2013 ◽  
Vol 91 (1) ◽  
pp. 71-79 ◽  
Author(s):  
Lena Ahmarani ◽  
Levon Avedanian ◽  
Johny Al-Khoury ◽  
Claudine Perreault ◽  
Danielle Jacques ◽  
...  

The results of our study show that whole-cell and nuclear levels of NADPH oxidase-1 (NOX1) are similar in human vascular endothelial cells (hVECs) and smooth muscle cells (hVSMCs), but lower in human endocardial endothelial cells (hEECs). NOX2 levels were higher in hVECs and lower in hVSMCs. NOX3 levels were the same in hVECs and hVSMCs, but lower in hEECs. NOX4 levels were similar in all of the cell types. NOX4 levels were higher in hVECs than in hVSMCs. NOX5 was also present throughout the 3 cell types, including their nuclei, in the following order: hEECs > hVSMCs > hVECs. The level of basal reactive oxygen species (ROS) was highest in hVECs and lowest in hVSMCs. However, the Ca2+ level was highest in hVSMCs and lowest in hVECs. These findings suggest that all types of NOXs exist in hEECs, hVECs, and hVSMCs, although their density and distribution are cell-type dependent. The density of the different NOXs correlated with the ROS level, but not with the Ca2+ level. In conclusion, NOXs, including NOX3, exist in cardiovascular cells and their nuclei. The nucleus is a major source of ROS generation. The nuclear NOXs may contribute to ROS and Ca2+ homeostasis, which may affect cell remodeling, including the formation of nuclear T-tubules in vascular diseases and aging.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1855
Author(s):  
Aikaterini Gatsiou ◽  
Kateryna Sopova ◽  
Alexandros Tselepis ◽  
Konstantinos Stellos

Platelets comprise a highly interactive immune cell subset of the circulatory system traditionally known for their unique haemostatic properties. Although platelets are considered as a vault of growth factors, cytokines and chemokines with pivotal role in vascular regeneration and angiogenesis, the exact mechanisms by which they influence vascular endothelial cells (ECs) function remain underappreciated. In the present study, we examined the role of human IL-17A/IL-17RA axis in platelet-mediated pro-angiogenic responses. We reveal that IL-17A receptor (IL-17RA) mRNA is present in platelets transcriptome and a profound increase is documented on the surface of activated platelets. By quantifying the protein levels of several factors, involved in angiogenesis, we identified that IL-17A/IL17RA axis selectively induces the release of vascular endothelial growth factor, interleukin -2 and -4, as well as monocyte chemoattractant protein -1 from treated platelets. However, IL-17A exerted no effect on the release of IL-10, an anti-inflammatory factor with potentially anti-angiogenic properties, from platelets. Treatment of human endothelial cell two-dimensional tubule networks or three-dimensional spheroid and mouse aortic ring structures with IL-17A-induced platelet releasate evoked pro-angiogenic responses of ECs. Our findings suggest that IL-17A may critically affect platelet release of pro-angiogenic factors driving ECs towards a pro-angiogenic state.


Angiogenesis ◽  
2021 ◽  
Author(s):  
Giovanni Canu ◽  
Christiana Ruhrberg

AbstractHematopoiesis in vertebrate embryos occurs in temporally and spatially overlapping waves in close proximity to blood vascular endothelial cells. Initially, yolk sac hematopoiesis produces primitive erythrocytes, megakaryocytes, and macrophages. Thereafter, sequential waves of definitive hematopoiesis arise from yolk sac and intraembryonic hemogenic endothelia through an endothelial-to-hematopoietic transition (EHT). During EHT, the endothelial and hematopoietic transcriptional programs are tightly co-regulated to orchestrate a shift in cell identity. In the yolk sac, EHT generates erythro-myeloid progenitors, which upon migration to the liver differentiate into fetal blood cells, including erythrocytes and tissue-resident macrophages. In the dorsal aorta, EHT produces hematopoietic stem cells, which engraft the fetal liver and then the bone marrow to sustain adult hematopoiesis. Recent studies have defined the relationship between the developing vascular and hematopoietic systems in animal models, including molecular mechanisms that drive the hemato-endothelial transcription program for EHT. Moreover, human pluripotent stem cells have enabled modeling of fetal human hematopoiesis and have begun to generate cell types of clinical interest for regenerative medicine.


2019 ◽  
Vol 20 (2) ◽  
pp. 406 ◽  
Author(s):  
Alina-Andreea Zimta ◽  
Oana Baru ◽  
Mandra Badea ◽  
Smaranda Buduru ◽  
Ioana Berindan-Neagoe

Dental surgeries can result in traumatic wounds that provoke major discomfort and have a high risk of infection. In recent years, density research has taken a keen interest in finding answers to this problem by looking at the latest results made in regenerative medicine and adapting them to the specificities of oral tissue. One of the undertaken directions is the study of angiogenesis as an integrative part of oral tissue regeneration. The stimulation of this process is intended to enhance the local availability of stem cells, oxygen levels, nutrient supply, and evacuation of toxic waste. For a successful stimulation of local angiogenesis, two major cellular components must be considered: the stem cells and the vascular endothelial cells. The exosomes are extracellular vesicles, which mediate the communication between two cell types. In regenerative dentistry, the analysis of exosome miRNA content taps into the extended communication between these cell types with the purpose of improving the regenerative potential of oral tissue. This review analyzes the stem cells available for the dentistry, the molecular cargo of their exosomes, and the possible implications these may have for a future therapeutic induction of angiogenesis in the oral wounds.


Sign in / Sign up

Export Citation Format

Share Document