An Overview of the Compounds Tested In Vivo for Leishmania spp. of the Last 5 Years

2020 ◽  
Vol 27 ◽  
Author(s):  
Mabilly Cox Holanda de Barros Dias ◽  
Luiz Alberto Barros Freitas ◽  
Ignes Regina dos Santos ◽  
Vanessa Silva de Almeida ◽  
Roberta Taylane do Amaral e Melo ◽  
...  

Background: Leishmaniasis, a still important public health problem, exhibits environmental risk factors such as massive migrations, urbanization, and deforestation. WHO research for Leishmaniasis has been mainly focused on the development of new tools, such as diagnostic tests, drugs, and vaccines. During the drug development strategy, only a few compounds seem promising and call for further study after the in vitro and in vivo preclinical tests. Objective: In this review, our group aimed to highlight the utmost research done during 2014 to 2019 in the fields of natural and synthetic compounds, as well as repurposed drugs and new formulations tested in vivo for Leishmania spp. Method: Based on the literature search, we used the databases MEDLINE, PUBMED, CAPES PERIODIC and ELSEVIER to delineate an interval of the last 5 years of research on each field. Results: Among the natural compounds tested, allicin and a fraction of potato tuber extract showed the most promising antileishmanial activity. Concerning synthetic compounds, quinolines, bornyl ester, thymol, benzoxaborole and nitroimidazole derivatives exhibited encouraging results. Moreover, repositioned alternatives involved combinations with known drugs and monotherapy protocols as well. In these years, new formulations were widely assessed as drug delivery systems, such as nanoparticles, micelles and liposomes in polymer conjugations. Conclusion: Drug repurposing and new formulations of already-known drugs are worthwhile approaches to promptly introduce new treatment schemes to Leishmaniasis. Nevertheless, the interest in new synthetic compounds and new formulations brings light to new treatment proposals and are notable lines of research.

2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
Solange L. de Castro ◽  
Denise G. J. Batista ◽  
Marcos M. Batista ◽  
Wanderson Batista ◽  
Anissa Daliry ◽  
...  

Chagas disease (CD), caused by Trypanosoma cruzi, affects approximately eight million individuals in Latin America and is emerging in nonendemic areas due to the globalisation of immigration and nonvectorial transmission routes. Although CD represents an important public health problem, resulting in high morbidity and considerable mortality rates, few investments have been allocated towards developing novel anti-T. cruzi agents. The available therapy for CD is based on two nitro derivatives (benznidazole (Bz) and nifurtimox (Nf)) developed more than four decades ago. Both are far from ideal due to substantial secondary side effects, limited efficacy against different parasite isolates, long-term therapy, and their well-known poor activity in the late chronic phase. These drawbacks justify the urgent need to identify better drugs to treat chagasic patients. Although several classes of natural and synthetic compounds have been reported to act in vitro and in vivo on T. cruzi, since the introduction of Bz and Nf, only a few drugs, such as allopurinol and a few sterol inhibitors, have moved to clinical trials. This reflects, at least in part, the absence of well-established universal protocols to screen and compare drug activity. In addition, a large number of in vitro studies have been conducted using only epimastigotes and trypomastigotes instead of evaluating compounds' activities against intracellular amastigotes, which are the reproductive forms in the vertebrate host and are thus an important determinant in the selection and identification of effective compounds for further in vivo analysis. In addition, due to pharmacokinetics and absorption, distribution, metabolism, and excretion characteristics, several compounds that were promising in vitro have not been as effective as Nf or Bz in animal models of T. cruzi infection. In the last two decades, our team has collaborated with different medicinal chemistry groups to develop preclinical studies for CD and investigate the in vitro and in vivo efficacy, toxicity, selectivity, and parasite targets of different classes of natural and synthetic compounds. Some of these results will be briefly presented, focusing primarily on diamidines and related compounds and naphthoquinone derivatives that showed the most promising efficacy against T. cruzi.


2012 ◽  
Vol 87 (2) ◽  
pp. 252-256 ◽  
Author(s):  
J. Keiser ◽  
R. Adelfio ◽  
M. Vargas ◽  
P. Odermatt ◽  
S. Tesana

AbstractOpisthorchiasis, caused by the liver fluke Opisthorchis viverrini, a food-borne trematode, is an important public health problem; however, only a single drug, praziquantel is available. We investigated tribendimidine–praziquantel combinations against O. viverriniin vitro and in vivo. The IC50 values of 0.16 μg/ml and 0.05 μg/ml were determined for praziquantel and tribendimidine, respectively, against adult O. viverriniin vitro. When O. viverrini was exposed to both drugs simultaneously (using a drug ratio based on the IC50 (1:3.2)) a synergistic effect was calculated (combination index (CI) at the IC50= 0.7). A similar result was observed when drug addition in vitro was spaced by the respective half-lives of the drugs (a CI of 0.78 at the IC50 for tribendimidine followed by praziquantel and a CI of 0.47 at the IC50 for praziquantel followed by tribendimidine). In vivo median-effect dose (ED50) values of 191 mg/kg and 147 mg/kg were calculated for praziquantel and tribendimidine, respectively. Low to moderate worm burden reductions (38–62%) were observed in O. viverrini infected hamsters when both drugs were administered simultaneously or on subsequent days, pointing to antagonistic effects in vivo. Further studies are necessary to understand the striking differences between the in vitro and in vivo observations using combinations of praziquantel and tribendimidine on O. viverrini.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Iranaia Assunção-Miranda ◽  
Christine Cruz-Oliveira ◽  
Andrea T. Da Poian

Arthritogenic alphaviruses, including Ross River virus (RRV), Chikungunya virus (CHIKV), Sindbis virus (SINV), Mayaro virus (MAYV), O'nyong-nyong virus (ONNV), and Barmah Forest virus (BFV), cause incapacitating and long lasting articular disease/myalgia. Outbreaks of viral arthritis and the global distribution of these diseases point to the emergence of arthritogenic alphaviruses as an important public health problem. This review discusses the molecular mechanisms involved in alphavirus-induced arthritis, exploring the recent data obtained within vitrosystems andin vivostudies using animal models and samples from patients. The factors associated to the extension and persistence of symptoms are highlighted, focusing on (a) virus replication in target cells, and tissues, including macrophages and muscle cells; (b) the inflammatory and immune responses with recruitment and activation of macrophage, NK cells and T lymphocytes to the lesion focus and the increase of inflammatory mediators levels; and (c) the persistence of virus or viral products in joint and muscle tissues. We also discuss the importance of the establishment of novel animal models to test new molecular targets and to develop more efficient and selective drugs to treat these diseases.


2021 ◽  
Author(s):  
Shivangi Shivangi ◽  
Laxman Meena

Abstract Mycobacterial pyrophosphatase (Mt-ppa) play essential role in bacterial in vitro and in vivo survival. This family of proteins reacts on pyrophosphates to release orthophosphates and protect bacteria from pyrophosphates toxicity. Rv3628 encodes pyrophosphate protein which is a type I pyrophosphate protein. This protein is engaged in hydrolysis of tri and diphosphates (majorly GTP, ATP and GDP) and its catalysis is metal ion dependent. Mt-ppa was showed efficient interaction with GTP molecule, whose Kd was 37.9µM, ΔH was -11Kcal/mol and ΔG was -6.06Kcal/mol. The protein was interacted with ATP family genes that resemble that it is participator in conversion of diphosphates moiety to the residual monophosphates. W102G, V150G, F44G, I119G, L93F, F3G, F122G, I108G, L32G, M82G, Y17G, L59G, V5G, V26G, I7G, W140D, W140G, W140A, F80G, W140S, L49G, L56G, I9G, V60G, V19G, V92G, L28G, L61G, Y126E and F123G are the top 30 mutation hits and Y126G, Y42G, R30G, E8G, K16G are top mutational hits in active site of Mt-ppa. Mt-ppa is temperature and pH sensitive as increasing temperature and pH decreases protein stability. It is also the receptor for several kinases that phosphorylate this protein at different Ser/Thr/Tyr sites. Virtual screening of 700 compounds from herbal ingredient targets (HITs) subset of zinc database give ZINC000003979028, ZINC000003870413, ZINC000003870412, ZINC000150338758, ZINC0000070450948, ZINC000150338754, ZINC000095098891, ZINC000000119985, ZINC000005085286 as the top target hits and Mac0182344 and NAV_2729 as the top GTPase inhibitor that can target and hinders Mt-ppa activity.


1998 ◽  
Vol 9 (suppl e) ◽  
pp. 10E-15E
Author(s):  
Donald E Low

The use of antimicrobial agents has led to reductions in illnesses and deaths from a variety of infectious diseases. Antimicrobial resistance has followed the introduction of almost every new antimicrobial agent and is now emerging as an important public health problem, especially in respiratory tract pathogens in the community. During the past decade in Canada, a rapid and relentless increase in antimicrobial resistance inStreptococcus pneumoniaeandHaemophilus inflluenzaehas been witnessed. Adverse implications as a result of the treatment of an infection with an antibiotic to which the offending pathogen is resistant have been recognized in only a few infectious disease syndromes (eg. bacterial meningitis). More often, resistance in vitro does not result in resistance in vivo (eg, respiratory tract infections). Therefore, before recommendations regarding empirical or directed therapy are changed, it is essential that evidence to support those decisions is obtained. More important, the prevention and control of such resistance must be addressed by reducing the burden of antibiotic selective pressure by curtailing inappropriate antibiotic use.


2020 ◽  
Vol 17 (4) ◽  
pp. 428-433
Author(s):  
Elizabeth Barbosa-Cabrera ◽  
Rosa Moo-Puc ◽  
Antonio Monge ◽  
Alma Delia Paz-González ◽  
Virgilio Bocanegra-García ◽  
...  

Background: Giardiasis is an important public health problem. However, its pharmacological treatment is limited mainly to two drugs, metronidazole and nitazoxanide. Objectives: Screening four series of esters (methyl, ethyl, isopropyl and n-propyl) of quinoxaline-7- carboxylate 1,4-di-N-oxide in in vitro and in vivo models as antigiardiasis agents. Objectives: Screening four series of esters (methyl, ethyl, isopropyl and n-propyl) of quinoxaline-7- carboxylate 1,4-di-N-oxide in in vitro and in vivo models as antigiardiasis agents. Methods: Briefly, 4 × 104 trophozoites of G. lamblia were incubated for 48 h at 37 °C with different concentrations of esters of quinoxaline-7-carboxylate 1,4-di-N-oxide, albendazole, metronidazole and nitazoxanide. Afterwards, trophozoites were counted and the half maximal inhibitory concentration (IC50) was calculated by Probit analysis. The in vivo antigiardial activity of the compounds was demonstrated using experimental infections of G. lamblia in suckling female CD-1 mice. Results: Compound T-069 with a thienyl, a trifluoromethyl and an isopropyl group at R1-, R2- and R3-position, respectively, on the quinoxaline 1,4-di-N-oxide ring in an in vitro model showed an IC50 value of 0.0014 µM, and 3502 and 1108 times more giardicidal activity than nitazoxanide and metronidazole in an in vivo model. Conclusion: Isopropyl ester of quinoxaline-7-carboxylate 1,4-di-N-oxide derivatives showed better giardicidal activity than the reference drugs; therefore, these compounds are good candidates to develop new pharmacological treatment for giardiasis.


1972 ◽  
Vol 28 (03) ◽  
pp. 351-358
Author(s):  
A.J Baillie ◽  
A. K Sim

SummaryThe activity of several synthetic compounds, rated from good to poor (or inactive) fibrinolytic activators, has been assessed by two different commonly-used in vitro methods. Compounds shown to be active over a narrow concentration range in the hanging clot test were shown to be inhibitors of plasmin and trypsin in the casein-olytic test. The inhibitory activity of these compounds was shown to increase with increasing substrate concentration and apparent activity in the hanging clot test. Possible explanations and relevance of these observations are discussed.


2020 ◽  
Vol 26 (35) ◽  
pp. 4362-4372
Author(s):  
John H. Miller ◽  
Viswanath Das

No effective therapeutics to treat neurodegenerative diseases exist, despite significant attempts to find drugs that can reduce or rescue the debilitating symptoms of tauopathies such as Alzheimer’s disease, Parkinson’s disease, frontotemporal dementia, amyotrophic lateral sclerosis, or Pick’s disease. A number of in vitro and in vivo models exist for studying neurodegenerative diseases, including cell models employing induced-pluripotent stem cells, cerebral organoids, and animal models of disease. Recent research has focused on microtubulestabilizing agents, either natural products or synthetic compounds that can prevent the axonal destruction caused by tau protein pathologies. Although promising results have come from animal model studies using brainpenetrant natural product microtubule-stabilizing agents, such as paclitaxel analogs that can access the brain, epothilones B and D, and other synthetic compounds such as davunetide or the triazolopyrimidines, early clinical trials in humans have been disappointing. This review aims to summarize the research that has been carried out in this area and discuss the potential for the future development of an effective microtubule stabilizing drug to treat neurodegenerative disease.


2020 ◽  
Vol 26 ◽  
Author(s):  
Kondeti Ramudu Shanmugam ◽  
Bhasha Shanmugam ◽  
Gangigunta Venkatasubbaiah ◽  
Sahukari Ravi ◽  
Kesireddy Sathyavelu Reddy

Background : Diabetes is a major public health problem in the world. It affects each and every part of the human body and also leads to organ failure. Hence, great progress made in the field of herbal medicine and diabetic research. Objectives: Our review will focus on the effect of bioactive compounds of medicinal plants which are used to treat diabetes in India and other countries. Methods: Information regarding diabetes, oxidative stress, medicinal plants and bioactive compounds were collected from different search engines like Science direct, Springer, Wiley online library, Taylor and francis, Bentham Science, Pubmed and Google scholar. Data was analyzed and summarized in the review. Results and Conclusion: Anti-diabetic drugs that are in use have many side effects on vital organs like heart, liver, kidney and brain. There is an urgent need for alternative medicine to treat diabetes and their disorders. In India and other countries herbal medicine was used to treat diabetes. Many herbal plants have antidiabetic effects. The plants like ginger, phyllanthus, curcumin, aswagandha, aloe, hibiscus and curcuma showed significant anti-hyperglycemic activities in experimental models and humans. The bioactive compounds like Allicin, azadirachtin, cajanin, curcumin, querceitin, gingerol possesses anti-diabetic, antioxidant and other pharmacological properties. This review focuses on the role of bioactive compounds of medicinal plants in prevention and management of diabetes. Conclusion: Moreover, our review suggests that bioactive compounds have the potential therapeutic potential against diabetes. However, further in vitro and in vivo studies are needed to validate these findings.


2020 ◽  
Vol 26 ◽  
Author(s):  
Luíza Dantas-Pereira ◽  
Edézio F. Cunha-Junior ◽  
Valter V. Andrade-Neto ◽  
John F. Bower ◽  
Guilherme A. M. Jardim ◽  
...  

: Chagas disease, Sleeping sickness and Leishmaniasis, caused by trypanosomatids Trypanosoma cruzi, Trypanosoma brucei and Leishmania spp., respectively, are considered neglected tropical diseases, and they especially affect impoverished populations in the developing world. The available chemotherapies are very limited and a search for alternatives is still necessary. In folk medicine, natural naphthoquinones have been employed for the treatment of a great variety of illnesses, including parasitic infections. This review is focused on the anti-trypanosomatid activity and mechanistic analysis of naphthoquinones and derivatives. Among all the series of derivatives tested in vitro, naphthoquinone-derived 1,2,3-triazoles were very active on T. cruzi infective forms in blood bank conditions, as well as in amastigotes of Leishmania spp. naphthoquinones containing a CF3 on a phenyl amine ring inhibited T. brucei proliferation in the nanomolar range, and naphthopterocarpanquinones stood out for their activity on a range of Leishmania species. Some of these compounds showed a promising selectivity index (SI) (30 to 1900), supporting further analysis in animal models. Indeed, high toxicity to the host and inactivation by blood components are crucial obstacles to be overcome to use naphthoquinones and/or their derivatives for chemotherapy. Multidisciplinary initiatives embracing medicinal chemistry, bioinformatics, biochemistry, and molecular and cellular biology need to be encouraged to allow the optimization of these compounds. Large scale automated tests are pivotal for the efficiency of the screening step, and subsequent evaluation of both the mechanism of action in vitro and pharmacokinetics in vivo are essential for the development of a novel, specific and safe derivative, minimizing adverse effects.


Sign in / Sign up

Export Citation Format

Share Document