Activity of tribendimidine and praziquantel combination therapy against the liver fluke Opisthorchis viverriniin vitro and in vivo

2012 ◽  
Vol 87 (2) ◽  
pp. 252-256 ◽  
Author(s):  
J. Keiser ◽  
R. Adelfio ◽  
M. Vargas ◽  
P. Odermatt ◽  
S. Tesana

AbstractOpisthorchiasis, caused by the liver fluke Opisthorchis viverrini, a food-borne trematode, is an important public health problem; however, only a single drug, praziquantel is available. We investigated tribendimidine–praziquantel combinations against O. viverriniin vitro and in vivo. The IC50 values of 0.16 μg/ml and 0.05 μg/ml were determined for praziquantel and tribendimidine, respectively, against adult O. viverriniin vitro. When O. viverrini was exposed to both drugs simultaneously (using a drug ratio based on the IC50 (1:3.2)) a synergistic effect was calculated (combination index (CI) at the IC50= 0.7). A similar result was observed when drug addition in vitro was spaced by the respective half-lives of the drugs (a CI of 0.78 at the IC50 for tribendimidine followed by praziquantel and a CI of 0.47 at the IC50 for praziquantel followed by tribendimidine). In vivo median-effect dose (ED50) values of 191 mg/kg and 147 mg/kg were calculated for praziquantel and tribendimidine, respectively. Low to moderate worm burden reductions (38–62%) were observed in O. viverrini infected hamsters when both drugs were administered simultaneously or on subsequent days, pointing to antagonistic effects in vivo. Further studies are necessary to understand the striking differences between the in vitro and in vivo observations using combinations of praziquantel and tribendimidine on O. viverrini.

Author(s):  
Diana N.J. Lockwood

Leprosy is a chronic granulomatous disease caused by Mycobacterium leprae, an acid-fast intracellular organism not yet cultivated in vitro. It is an important public health problem worldwide, with an estimated 4 million people disabled by the disease. Transmission of M. leprae is only partially understood, but untreated lepromatous patients discharge abundant organisms from their nasal mucosa into the environment....


Parasitology ◽  
2009 ◽  
Vol 137 (3) ◽  
pp. 589-603 ◽  
Author(s):  
J. KEISER

SUMMARYSchistosomiasis and food-borne trematodiases are chronic parasitic diseases affecting millions of people mostly in the developing world. Additional drugs should be developed as only few drugs are available for treatment and drug resistance might emerge. In vitro and in vivo whole parasite screens represent essential components of the trematodicidal drug discovery cascade. This review describes the current state-of-the-art of in vitro and in vivo screening systems of the blood fluke Schistosoma mansoni, the liver fluke Fasciola hepatica and the intestinal fluke Echinostoma caproni. Examples of in vitro and in vivo evaluation of compounds for activity are presented. To boost the discovery pipeline for these diseases there is a need to develop validated, robust high-throughput in vitro systems with simple readouts.


2020 ◽  
pp. 1154-1167
Author(s):  
Diana N.J. Lockwood

Leprosy is a chronic granulomatous disease caused by Mycobacterium leprae, an acid-fast intracellular organism not yet cultivated in vitro. It is an important public health problem worldwide, with an estimated 4 million people disabled by the disease. Transmission of M. leprae is only partially understood, but untreated lepromatous patients discharge abundant organisms from their nasal mucosa into the environment. It was first identified in the nodules of patients with lepromatous leprosy by Hansen in 1873. M. leprae preferentially parasitizes skin macrophages and peripheral nerve Schwann cells. A second agent of leprosy M. lepromatosis which diverged form M. leprae 10 million years ago has also been recognized as causing leprosy in 40 + patients and the main focus of origin is Mexico. The importance of this organism will be determined over the next few years.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Iranaia Assunção-Miranda ◽  
Christine Cruz-Oliveira ◽  
Andrea T. Da Poian

Arthritogenic alphaviruses, including Ross River virus (RRV), Chikungunya virus (CHIKV), Sindbis virus (SINV), Mayaro virus (MAYV), O'nyong-nyong virus (ONNV), and Barmah Forest virus (BFV), cause incapacitating and long lasting articular disease/myalgia. Outbreaks of viral arthritis and the global distribution of these diseases point to the emergence of arthritogenic alphaviruses as an important public health problem. This review discusses the molecular mechanisms involved in alphavirus-induced arthritis, exploring the recent data obtained within vitrosystems andin vivostudies using animal models and samples from patients. The factors associated to the extension and persistence of symptoms are highlighted, focusing on (a) virus replication in target cells, and tissues, including macrophages and muscle cells; (b) the inflammatory and immune responses with recruitment and activation of macrophage, NK cells and T lymphocytes to the lesion focus and the increase of inflammatory mediators levels; and (c) the persistence of virus or viral products in joint and muscle tissues. We also discuss the importance of the establishment of novel animal models to test new molecular targets and to develop more efficient and selective drugs to treat these diseases.


2020 ◽  
Vol 27 ◽  
Author(s):  
Mabilly Cox Holanda de Barros Dias ◽  
Luiz Alberto Barros Freitas ◽  
Ignes Regina dos Santos ◽  
Vanessa Silva de Almeida ◽  
Roberta Taylane do Amaral e Melo ◽  
...  

Background: Leishmaniasis, a still important public health problem, exhibits environmental risk factors such as massive migrations, urbanization, and deforestation. WHO research for Leishmaniasis has been mainly focused on the development of new tools, such as diagnostic tests, drugs, and vaccines. During the drug development strategy, only a few compounds seem promising and call for further study after the in vitro and in vivo preclinical tests. Objective: In this review, our group aimed to highlight the utmost research done during 2014 to 2019 in the fields of natural and synthetic compounds, as well as repurposed drugs and new formulations tested in vivo for Leishmania spp. Method: Based on the literature search, we used the databases MEDLINE, PUBMED, CAPES PERIODIC and ELSEVIER to delineate an interval of the last 5 years of research on each field. Results: Among the natural compounds tested, allicin and a fraction of potato tuber extract showed the most promising antileishmanial activity. Concerning synthetic compounds, quinolines, bornyl ester, thymol, benzoxaborole and nitroimidazole derivatives exhibited encouraging results. Moreover, repositioned alternatives involved combinations with known drugs and monotherapy protocols as well. In these years, new formulations were widely assessed as drug delivery systems, such as nanoparticles, micelles and liposomes in polymer conjugations. Conclusion: Drug repurposing and new formulations of already-known drugs are worthwhile approaches to promptly introduce new treatment schemes to Leishmaniasis. Nevertheless, the interest in new synthetic compounds and new formulations brings light to new treatment proposals and are notable lines of research.


2012 ◽  
Vol 57 (1) ◽  
pp. 658-660 ◽  
Author(s):  
Marcus Ho Yin Wong ◽  
Sheng Chen

ABSTRACTFood-borne salmonellosis is an important public health problem worldwide and the second leading cause of food-borne illnesses in Hong Kong. In this study, the prevalence and antimicrobial resistance ofSalmonellain meat products in Hong Kong were determined. Interestingly, a plasmid-mediated quinolone resistance (PMQR) gene combination,oqxAB, which mediates resistance to nalidixic acid, chloramphenicol, and olaquindox, was for the first time detectable on the chromosomes of twoSalmonella entericaserovar Derby isolates. Further surveillance ofoqxABinSalmonellawill be needed.


1998 ◽  
Vol 9 (suppl e) ◽  
pp. 10E-15E
Author(s):  
Donald E Low

The use of antimicrobial agents has led to reductions in illnesses and deaths from a variety of infectious diseases. Antimicrobial resistance has followed the introduction of almost every new antimicrobial agent and is now emerging as an important public health problem, especially in respiratory tract pathogens in the community. During the past decade in Canada, a rapid and relentless increase in antimicrobial resistance inStreptococcus pneumoniaeandHaemophilus inflluenzaehas been witnessed. Adverse implications as a result of the treatment of an infection with an antibiotic to which the offending pathogen is resistant have been recognized in only a few infectious disease syndromes (eg. bacterial meningitis). More often, resistance in vitro does not result in resistance in vivo (eg, respiratory tract infections). Therefore, before recommendations regarding empirical or directed therapy are changed, it is essential that evidence to support those decisions is obtained. More important, the prevention and control of such resistance must be addressed by reducing the burden of antibiotic selective pressure by curtailing inappropriate antibiotic use.


2020 ◽  
Vol 17 (4) ◽  
pp. 428-433
Author(s):  
Elizabeth Barbosa-Cabrera ◽  
Rosa Moo-Puc ◽  
Antonio Monge ◽  
Alma Delia Paz-González ◽  
Virgilio Bocanegra-García ◽  
...  

Background: Giardiasis is an important public health problem. However, its pharmacological treatment is limited mainly to two drugs, metronidazole and nitazoxanide. Objectives: Screening four series of esters (methyl, ethyl, isopropyl and n-propyl) of quinoxaline-7- carboxylate 1,4-di-N-oxide in in vitro and in vivo models as antigiardiasis agents. Objectives: Screening four series of esters (methyl, ethyl, isopropyl and n-propyl) of quinoxaline-7- carboxylate 1,4-di-N-oxide in in vitro and in vivo models as antigiardiasis agents. Methods: Briefly, 4 × 104 trophozoites of G. lamblia were incubated for 48 h at 37 °C with different concentrations of esters of quinoxaline-7-carboxylate 1,4-di-N-oxide, albendazole, metronidazole and nitazoxanide. Afterwards, trophozoites were counted and the half maximal inhibitory concentration (IC50) was calculated by Probit analysis. The in vivo antigiardial activity of the compounds was demonstrated using experimental infections of G. lamblia in suckling female CD-1 mice. Results: Compound T-069 with a thienyl, a trifluoromethyl and an isopropyl group at R1-, R2- and R3-position, respectively, on the quinoxaline 1,4-di-N-oxide ring in an in vitro model showed an IC50 value of 0.0014 µM, and 3502 and 1108 times more giardicidal activity than nitazoxanide and metronidazole in an in vivo model. Conclusion: Isopropyl ester of quinoxaline-7-carboxylate 1,4-di-N-oxide derivatives showed better giardicidal activity than the reference drugs; therefore, these compounds are good candidates to develop new pharmacological treatment for giardiasis.


2020 ◽  
Vol 26 ◽  
Author(s):  
Kondeti Ramudu Shanmugam ◽  
Bhasha Shanmugam ◽  
Gangigunta Venkatasubbaiah ◽  
Sahukari Ravi ◽  
Kesireddy Sathyavelu Reddy

Background : Diabetes is a major public health problem in the world. It affects each and every part of the human body and also leads to organ failure. Hence, great progress made in the field of herbal medicine and diabetic research. Objectives: Our review will focus on the effect of bioactive compounds of medicinal plants which are used to treat diabetes in India and other countries. Methods: Information regarding diabetes, oxidative stress, medicinal plants and bioactive compounds were collected from different search engines like Science direct, Springer, Wiley online library, Taylor and francis, Bentham Science, Pubmed and Google scholar. Data was analyzed and summarized in the review. Results and Conclusion: Anti-diabetic drugs that are in use have many side effects on vital organs like heart, liver, kidney and brain. There is an urgent need for alternative medicine to treat diabetes and their disorders. In India and other countries herbal medicine was used to treat diabetes. Many herbal plants have antidiabetic effects. The plants like ginger, phyllanthus, curcumin, aswagandha, aloe, hibiscus and curcuma showed significant anti-hyperglycemic activities in experimental models and humans. The bioactive compounds like Allicin, azadirachtin, cajanin, curcumin, querceitin, gingerol possesses anti-diabetic, antioxidant and other pharmacological properties. This review focuses on the role of bioactive compounds of medicinal plants in prevention and management of diabetes. Conclusion: Moreover, our review suggests that bioactive compounds have the potential therapeutic potential against diabetes. However, further in vitro and in vivo studies are needed to validate these findings.


Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1860
Author(s):  
Patricia Diez-Echave ◽  
Izaskun Martín-Cabrejas ◽  
José Garrido-Mesa ◽  
Susana Langa ◽  
Teresa Vezza ◽  
...  

Limosilactobacillus reuteri INIA P572 is a strain able to produce the antimicrobial compound reuterin in dairy products, exhibiting a protective effect against some food-borne pathogens. In this study, we investigated some probiotic properties of this strain such as resistance to gastrointestinal passage or to colonic conditions, reuterin production in a colonic environment, and immunomodulatory activity, using different in vitro and in vivo models. The results showed a high resistance of this strain to gastrointestinal conditions, as well as capacity to grow and produce reuterin in a human colonic model. Although the in vitro assays using the RAW 264.7 macrophage cell line did not demonstrate direct immunomodulatory properties, the in vivo assays using a Dextran Sulphate Sodium (DSS)-induced colitic mice model showed clear immunomodulatory and protective effects of this strain.


Sign in / Sign up

Export Citation Format

Share Document